1
|
Yang Y, Zhao Z, Lei D, He H, Xie H, Zhang X, Sun S, Bao X, Zhang Y. Microbial inoculant accelerated pig slurry maturation at low-temperature anaerobic digestion: Performance and mechanism. BIORESOURCE TECHNOLOGY 2025; 430:132532. [PMID: 40228724 DOI: 10.1016/j.biortech.2025.132532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
This study investigated the impact of microbial inoculants on maturing pig slurry during anaerobic digestion (AD) at psychrophilic temperatures (10 °C). A simulation experiment was conducted with two treatments: pig slurry alone (CK) and pig slurry supplemented with microbial inoculants (MA). The MA treatment achieved faster maturity than CK, as evidenced by an improved germination index (achieving 70 % in advance) and a reduced content of organic pollutants, which was attributed to an increased relative abundance of hydrolytic microorganisms (7-21 %) and decreased pathogens (6-9 %) at the early stage (<42 (d)). Microbial inoculants influenced pig slurry microorganisms by serving as keystone taxa (B_OTU229 (f_Ruminococcaceae) and F_OTU76 (s_Acremonium alcalophilum)), and stimulating new keystone taxa (B_OTU423 (g_NK4A214) and F_OTU25 (g_Clavulina)) through associative interactions, thereby intensifying saprotrophic and carbon cycling processes, and accelerating maturation. These results provide a biological strategy for maturing pig slurry and help elucidate the mechanisms underlying microbial effects.
Collapse
Affiliation(s)
- Yali Yang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China
| | - Zhe Zhao
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Dengchao Lei
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China
| | - Hongbo He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China
| | - Hongtu Xie
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China.
| | - Xudong Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China
| | - Shijun Sun
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xuelian Bao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China
| | - Yulan Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Zhai S, Wang K, Yu F, Gao Z, Yang X, Cao X, Shaghaleh H, Hamoud YA. Effects of Trichoderma harzianum combined with Phanerochaete chrysosporium on lignin degradation and humification during chicken manure and rice husk composting. Front Microbiol 2025; 16:1515931. [PMID: 40092040 PMCID: PMC11906335 DOI: 10.3389/fmicb.2025.1515931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
The purpose of this study was to investigate the effects of combined treatment of Trichoderma harzianum and Phanerochaete chrysosporium on lignin degradation and humification during aerobic composting. Chicken manure (CM) and rice husk (RH) were used as organic raw materials for composting. The basic physicochemical analysis indicated that the combined addition of Trichoderma harzianum and Phanerochaete chrysosporium effectively improved lignin degradation rate (16.60%), increased humic acid (HA) content (22.70 g/kg), and the germination index (GI) reached 110.99%. Fungal community revealed that the relative abundance of Ascomycota was 37.46-68.85%, 9.57-60.35%, 58.02-91.76%, 0.98-91.60% in CK, T1, T2, T3 and Basidiomycota was 7.81-36.03%, 7.84-3.55%, 4.42-9.60%, 0.06-8.05% in CK, T1, T2, T3 (in phylum); the relative abundance of Kazachstania was 0.001-68.48%, 0.62-14.60%, 7.06-25.45%, 0.001-38.16% in CK, T1, T2, T3 and Diutina was 2.67-7.97%, 1.11-34.42%, 15.79-64.41%, 0.25-35.34% in CK, T1, T2, T3 (in genus) during the composting. Especially, the combined addition of Trichoderma harzianum and Phanerochaete chrysosporium had more negative impact on the activity of Basidiomycota compared with CK and other treatments and Trichoderma harzianum treatment had the strongest inhibitory effect on Tausonia abundance compared with CK and other treatments. Correlation analysis indicated that moisture content influenced fungal community structure (r = -0.740, p < 0.01) which affected lignin degradation (r = -0.952, p < 0.01) and compost maturity level in the composting process. Fungi Functional Guild (FUNGuild) and correlation heatmap demonstrated that T3 could enhance the relative abundance of endophyte which may had the potential to improve the degradation of lignin. This study confirmed the positive effects of the combination of Trichoderma harzianum and Phanerochaete chrysosporium in enhancing lignin degradation and promoting compost maturity, providing a foundation for a deeper understanding of the mechanisms involved in lignin degradation and humification processes influenced by the fungal community during composting, ultimately contributing to the efficient utilization of agricultural waste resources.
Collapse
Affiliation(s)
- Senmao Zhai
- Anhui and Huaihe River Institute of Hydraulic Research, Anhui Provincial Key Laboratory of Water Science and Intelligent Water Conservancy, Hefei, China
| | - Kuang Wang
- Anhui and Huaihe River Institute of Hydraulic Research, Anhui Provincial Key Laboratory of Water Science and Intelligent Water Conservancy, Hefei, China
| | - Fengcun Yu
- Anhui and Huaihe River Institute of Hydraulic Research, Anhui Provincial Key Laboratory of Water Science and Intelligent Water Conservancy, Hefei, China
| | - Zhenlu Gao
- Anhui and Huaihe River Institute of Hydraulic Research, Anhui Provincial Key Laboratory of Water Science and Intelligent Water Conservancy, Hefei, China
| | - Xu Yang
- College of Hydrology and Water Recourses, Hohai University, Nanjing, Jiangsu, China
| | - Xiuqing Cao
- Anhui and Huaihe River Institute of Hydraulic Research, Anhui Provincial Key Laboratory of Water Science and Intelligent Water Conservancy, Hefei, China
| | - Hiba Shaghaleh
- The Key Lab of Integrated Regulation of Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Nanjing, Jiangsu, China
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Wu H, Wang C, Zhou J, Cong H, Gao Y, Cai W, Feng S, Zhang C. Feedstock optimization with low carbon to nitrogen ratio during algal sludge aerobic composting: Quality and gaseous emissions. BIORESOURCE TECHNOLOGY 2025; 416:131811. [PMID: 39542056 DOI: 10.1016/j.biortech.2024.131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study investigated compost quality and gaseous emissions during the algal sludge composting. The experiment explored the feasibility of low initial carbon to nitrogen (C/N) ratio composting by using different volume ratios of algal sludge and spent mushroom substrates (1:1, 1:2, 1:3, and 1:4, corresponding to C/N ratios of 9.5, 12.3, 14.6, 16.0, respectively). The results showed that increasing the proportion of algal sludge in the initial material led to a longer maturation time and higher nitrogen losses but also enhanced the mineralization of organic nitrogen (converted to NH4+ and NO3-) and reduced carbon losses. The addition of carbon-rich bulking agents within a certain range improved the diversity and interactions of bacterial communities during algal sludge composting. In conclusion, considering the nitrogen and carbon lost, retained, and made available across the four treatments, treatment 3 (C/N = 14.6) appears to be the optimal choice for low C/N composting.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Chengkai Wang
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Jiahui Zhou
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China.
| | - Yu Gao
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China
| | - Wei Cai
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou 213200, PR China
| |
Collapse
|
4
|
Liu X, Kong L, Tong L, Zackariah GSK, Zhu R, Li Z, Lv Y. Inoculation with effective microorganisms agent enhanced fungal diversity in the secondary fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123985. [PMID: 39752954 DOI: 10.1016/j.jenvman.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed. The results showed that microbial inoculations enhanced fungal richness and diversity during the secondary fermentation, promoted beneficial fungi, and restrained pathogenic microbes. Microbial inoculation facilitated saprophytic fungi and symbiotic fungi, augmented fungal network complexity and cooperation during the first fermentation, concurrently impeding fungal network complexity and cooperation during the secondary fermentation. These results provide technical guidance for composting process optimization and compost product quality improving, which was beneficial to promote soil quality and mitigating agricultural non-point source pollution.
Collapse
Affiliation(s)
- Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China; Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lihong Tong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - G S K Zackariah
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
De Bernardi A, Bandini F, Marini E, Tagliabue F, Casucci C, Brunetti G, Vaccari F, Bellotti G, Tabaglio V, Fiorini A, Ilari A, Gnoffo C, Frache A, Taskin E, Rossa UB, Ricardo ESL, Martins AO, Duca D, Puglisi E, Pedretti EF, Vischetti C. Integrated assessment of the chemical, microbiological and ecotoxicological effects of a bio-packaging end-of-life in compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175403. [PMID: 39128510 DOI: 10.1016/j.scitotenv.2024.175403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemico-physical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome. The bioplastic residues did not influence the earthworms' fertility, but DNA damages were measured at the highest bioplastic dose tested. Furthermore bioplastic residues did not significantly affect the bacterial community during composting, but compost treated with 2 % bio-packaging exhibited greater variability in the fungal communities, including Mortierella, Mucor, and Alternaria genera, which can use bioplastics as a carbon source. Moreover, bioplastic residues influenced gut bacterial communities, with Paenibacillus, Bacillus, Rhizobium, Legionella, and Saccharimonadales genera being particularly abundant at 2 % bioplastic concentration. Higher concentrations affected microbial composition by favouring different genera such as Pseudomonas, Ureibacillus, and Streptococcus. For fungal communities, Pestalotiopsis sp. was found predominantly in earthworms exposed to 2 % bioplastic residues and is potentially linked to its role as a microplastics degrader. After composting, Attenuated Total Reflection analysis on bioplastic residues displayed evidence of ageing with the formation of hydroxyl groups and amidic groups after earthworm exposure.
Collapse
Affiliation(s)
- Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Bandini
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Enrica Marini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Tagliabue
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Gianluca Brunetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Future Industries Institute, University of South Australia, Mawson Lakes Boulevard, South Australia, SA 5095, Australia.
| | - Filippo Vaccari
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Alessio Ilari
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Chiara Gnoffo
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Alberto Frache
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università, 5, 39100 Bolzano-Bozen, Italy.
| | - Uberson Boaretto Rossa
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | - Elisângela Silva Lopes Ricardo
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | | | - Daniele Duca
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
6
|
Fu X, Zuo H, Weng Y, Wang Z, Kou Y, Wang D, Li Z, Wang Q, Arslan M, Gamal El-Din M, Chen C. Performance evaluation and microbial community succession analysis of co-composting treatment of refinery waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122872. [PMID: 39405869 DOI: 10.1016/j.jenvman.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Refinery waste activated sludge (RWAS) is riched in organic matter with energy recovery value, while unique petroleum components in RWAS may pose challenges to the recycling process. Aerobic composting technology is an effective means of organic solid waste resource treatment, which can convert organic solid waste into fertilizer for agriculture. This study explores the effect of petroleum components on the performance of RWAS composting by co-composting it with chicken manure. The results showed that more than 65% of petroleum was removed by aerobic composting. After composting, germination index (GI) exceeded 80%, and a humic acid to fulvic acid ratio (HA/FA) was greater than 1. These results signified that the petroleum components slightly affect the harmless and recycling of RWAS. The microbial community succession found that Firmicutes (54.11-91.96%) and Ascomycota (82.35-97.21%) emerged as the dominant phyla during the thermophilic phase of composting. Thermobifida, norank_f__Limnochordaceae and Kernia were the key microorganism in the degradation of petroleum and the humification of composting, and reduced the phytotoxicity of composting products. Redundancy analysis found that the degradation of petroleum was conducive to the formation of humic acid. These findings indicate that aerobic composting technology can remove petroleum components in RWAS and convert them into composted fertilizers, providing key technical support for managing RWAS in a sustainable and environmentally friendly manner.
Collapse
Affiliation(s)
- Xinge Fu
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Hui Zuo
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yibin Weng
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, 102200, China
| | - Zhouhao Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yue Kou
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dingyuan Wang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhuoyu Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Muhammad Arslan
- University of Alberta, Department of Civil & Environmental Engineering, Edmonton, AB, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil & Environmental Engineering, Edmonton, AB, T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
7
|
Dong S, Li R, Zhou K, Wei Y, Li J, Cheng M, Chen P, Hu X. Response of humification process to fungal inoculant in corn straw composting with two different kinds of nitrogen sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174461. [PMID: 38964380 DOI: 10.1016/j.scitotenv.2024.174461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Inoculation is widely used in composting to improve the mineralization process, however, the link of fungal inoculant to humification is rarely proposed. The objective of this study was to investigate the effect of compound fungal inoculation on humification process and fungal community dynamics in corn straw composting with two different kinds of nitrogen sources [pig manure (PM) and urea (UR)]. Structural equation modeling and random forest analysis were conducted to identify key fungi and explore the fungi-mediated humification mechanism. Results showed that fungal inoculation increased the content of humic acids in PM and UR by 71.76 % and 53.01 % compared to control, respectively. High-throughput sequencing indicated that there were more key fungal genera for lignin degradation in PM especially in the later stage of composting, but a more complex fungal (genera) connections with lower humification degree was found in UR. Network analysis and random forest suggested that inoculation promoted dominant genus such as Coprinus, affecting lignocellulose degradation. Structural equation modeling indicated that fungal inoculation could promote humification by direct pathway based on lignin degradation and indirect pathway based on stimulating the indigenous microbes such as Scedosporiu and Coprinus for the accumulation of carboxyl and polyphenol hydroxyl groups. In summary, fungal inoculation is suitable to be used combining with complex nitrogen source such as pig manure in straw composting.
Collapse
Affiliation(s)
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Mahongnao S, Sharma P, Nanda S. Characterization of fungal microbiome structure in leaf litter compost through metagenomic profiling for harnessing the bio-organic fertilizer potential. 3 Biotech 2024; 14:191. [PMID: 39113676 PMCID: PMC11300423 DOI: 10.1007/s13205-024-04028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/14/2024] [Indexed: 08/10/2024] Open
Abstract
Sustainable waste management through composting has gain renewed attention since it could upcycle organic waste into valuable bio-organic fertiliser. This study explored the composition of fungal communities in leaf litter and organic waste composts ecosystems by employing advanced internal transcribed spacer (ITS) metagenomic profiling. This approach provides insights into the diversity, composition, and potential functions of these fungi, offering practical implications for optimising composting processes and enhancing sustainable waste management practices. Various organic composts were collected, including leaf litter composts, from different sources in Delhi-National Capital Region, India, and fungal microbiome composition were characterised through ITS profiling. Results revealed that leaf litter composts and cow dung manure had the highest fungal read counts, while kitchen waste compost had the lowest. Alpha diversity indices, including Chao1 and Shannon, exhibited differences in species richness and diversity among composts, though statistical significance was limited. The leaf composts had relatively higher alpha diversity than the other organic waste composts analysed. The study also identified dominant fungal genera specifically, Wallemia, Geotrichum, Pichia, Mycothermus, Mortierella, Aspergillus, Fusarium, and Basidiobolus, across the compost samples. The presence of beneficial fungal genera like Pichia, Geotrichum, Trichoderma, Mortierella, Basidiobolus, Aspergillus, and others were detected in leaf waste compost and the other organic waste composts. There was also presence of some pathogenic genera viz. Alternaria, Fusarium, and Acremonium, in these composts which underscored the need for proper composting practices and source selection to optimise soil fertility and minimise disease risks in agriculture. Remarkably, leaf compost has highest proportion of beneficial genera with least observed abundance of pathogens. On the other hand, the municipal organic waste compost has least proportion of beneficial genera with higher abundance of pathogens. Overall, these findings contributed to characterisation of composting processes, advancing waste management practices, and enhancing the use of leaf compost as a bio-organic fertiliser. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04028-0.
Collapse
Affiliation(s)
- Sophayo Mahongnao
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| | - Pooja Sharma
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| | - Sarita Nanda
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| |
Collapse
|
9
|
Xu Z, Wang S, Li R, Li H, Zhang C, Zhang Y, Zhang X, Quan F, Wang F. Enhancement of microbial community dynamics and metabolism in compost through ammonifying cultures inoculation. ENVIRONMENTAL RESEARCH 2024; 255:119188. [PMID: 38795950 DOI: 10.1016/j.envres.2024.119188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Huijia Li
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos Building, Singapore 138669, Singapore
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven, 3001, Belgium
| |
Collapse
|
10
|
Wang Y, Li J, Chang Y, Chang S, Chen Y, Wei D, Li R, Zheng Y, Kang Z, Wu Z, Chen P, Wei Y, Li J, Xu Z. Metabolomics analysis of advancing humification mechanism in secondary fermentation of composting by fungal bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173267. [PMID: 38754504 DOI: 10.1016/j.scitotenv.2024.173267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The aim of this study was to investigate the differential metabolites and core metabolic pathways caused by fungal bioaugmentation (pH regulation and Phanerochaete chrysosporium inoculation) in secondary fermentation of composting, as well as their roles in advancing humification mechanism. Metabolomics analyses showed that inoculation strengthened the expression of carbohydrate, amino acid, and aromatic metabolites, and pH regulation resulted in the up-regulation of the phosphotransferase system and its downstream carbohydrate metabolic pathways, inhibiting Toluene degradation and driving biosynthesis of aromatic amino acids via the Shikimate pathway. Partial least squares path model suggested that lignocellulose degradation, precursors especially amino acids and their metabolism process enhanced by the regulation of pH and Phanerochaete were the main direct factors for humic acid formation in composting. This finding helps to understand the regulating mechanism of fungal bioaugmentation to improve the maturity of agricultural waste composting.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanting Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Zhang M, Zhang X, Lin H, Zheng H, Zhou Q. Manure enriched with nitrogen derived from high-protein food waste in a large dining facility. Heliyon 2024; 10:e32937. [PMID: 39022016 PMCID: PMC11252705 DOI: 10.1016/j.heliyon.2024.e32937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Food waste (FW) from large dining facility has been a pressing environmental challenge in China recently. This study developed an innovative species-specific feeding strategy for producing pigeon meat and excellent manure from FW. Adding FW to the feed of pigeons significantly increased their feed intake and promoted their growth although the pigeons showed a strong aversion to the FW. We produced a "super manure" with exceptionally high nitrogen (N) content (mean = 10.77 % on a dry basis, 8.04-12.57 %, n = 264) by feeding slowly-growing pigeon species (Columba livia vs. and Caoge Huzhou 11) with protein-high commercial feed and FW. A significant negative relationship between the N and carbon (C) contents in the pigeon manure was found, with C depletion higher than N depletion. Furthermore, the N content in the anaerobic composting (AnC) manure was 29.16 % higher than that in the FW. Fourier transform infrared (FT-IR) analysis and stable isotopes δ13C and δ15N in the manure clearly identified the transformations of nutrients during pigeon feeding and the AnC process. This study opens a path for producing N-high manure using protein-high food waste.
Collapse
Affiliation(s)
- Mengjie Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huabao Zheng
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Xu Z, Li R, Liu J, Xu X, Wang S, Gao F, Yang G, Yao Y, Zhang Z, Zhang X, Zhang Y, Quan F. The impact of ammonifying microorganisms on the stabilization and carbon conversion of cow manure and wheat husk co-composting. CHEMICAL ENGINEERING JOURNAL 2024; 490:151626. [DOI: 10.1016/j.cej.2024.151626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
13
|
Zhu L, Wang X, Liu L, Le B, Tan C, Dong C, Yao X, Hu B. Fungi play a crucial role in sustaining microbial networks and accelerating organic matter mineralization and humification during thermophilic phase of composting. ENVIRONMENTAL RESEARCH 2024; 254:119155. [PMID: 38754614 DOI: 10.1016/j.envres.2024.119155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Boyi Le
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunxu Tan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
14
|
Liu X, Rong X, Jiang P, Yang J, Li H, Yang Y, Deng X, Xie G, Luo G. Biodiversity and core microbiota of key-stone ecological clusters regulate compost maturity during cow-dung-driven composting. ENVIRONMENTAL RESEARCH 2024; 245:118034. [PMID: 38147920 DOI: 10.1016/j.envres.2023.118034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The primary objectives of this study were to explore the community-level succession of bacteria, fungi, and protists during cow-dung-driven composting and to elucidate the contribution of the biodiversity and core microbiota of key-stone microbial clusters on compost maturity. Herein, we used high-throughput sequencing, polytrophic ecological networks, and statistical models to visualize our hypothesis. The results showed significant differences in the richness, phylogenetic diversity, and community composition of bacteria, fungi, and eukaryotes at different composting stages. The ASV191 (Sphingobacterium), ASV2243 (Galibacter), ASV206 (Galibacter), and ASV62 (Firmicutes) were the core microbiota of key-stone bacterial clusters relating to compost maturity; And the ASV356 (Chytridiomycota), ASV470 (Basidiomycota), and ASV299 (Ciliophora) were the core microbiota of key-stone eukaryotic clusters relating to compost maturity based on the data of this study. Compared with the fungal taxa, the biodiversity and core microbiota of key-stone bacterial and eukaryotic clusters contributed more to compost maturity and could largely predict the change in the compost maturity. Structural equation modeling revealed that the biodiversity of total microbial communities and the biodiversity and core microbiota of the key-stone microbial clusters in the compost directly and indirectly regulated compost maturity by influencing nutrient availability (e.g., NH4+-N and NO3--N), hemicellulose, humic acid content, and fulvic acid content, respectively. These results contribute to our understanding of the biodiversity and core microbiota of key-stone microbial clusters in compost to improve the performance and efficiency of cow-dung-driven composting.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangmin Rong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Jiang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Junyan Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Han Li
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Yong Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Xingxiang Deng
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Guixian Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Gongwen Luo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Verma S, Awasthi MK, Liu T, Awasthi SK, Syed A, Bahkali AH, Verma M, Zhang Z. Influence of biochar on succession of fungal communities during food waste composting. BIORESOURCE TECHNOLOGY 2023; 385:129437. [PMID: 37399966 DOI: 10.1016/j.biortech.2023.129437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study aims to examine the effects of biochar on fungal dynamics during food waste composting. The different dosage of wheat straw biochar from 0 to 15% (0%, 2.5%, 5%, 7.5%, 10%, and 15%) were used as an additive to composting and examined for 42 days. The results showed that Ascomycota (94.64%) and Basidiomycota (5.36%) were the most dominant phyla. The most common fungal genera were Kluyveromyces (3.76%), Candida (5.34%), Trichoderma (2.30%), Fusarium (0.46%), Mycothermus-thermophilus (5.67%), Trametes (0.46%), and Trichosporon (3.38%). The average number of operational taxonomic units were 469, with the greatest abundance seen in the 7.5% and 10% treatments. Redundancy analysis revealed that different concentrations of biochar applied treatments have significantly distinct fungal communities. Additionally, correlation analyses of fungal interactions with environmental elements, performed through a heatmap, also indicate a distinct difference among the treatments. The study clearly demonstrates that 15% of biochar has a positive impact on fungal diversity and improves the food waste composting.
Collapse
Affiliation(s)
- Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
16
|
Li Y, Xue Z, Li S, Sun X, Hao D. Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning. BIORESOURCE TECHNOLOGY 2023; 385:129444. [PMID: 37399955 DOI: 10.1016/j.biortech.2023.129444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Ensuring the maturity of green waste compost is crucial to composting processes and quality control of compost products. However, accurate prediction of green waste compost maturity remains a challenge, as there are limited computational methods available. This study aimed to address this issue by employing four machine learning models to predict two indicators of green waste compost maturity: seed germination index (GI) and T value. The four models were compared, and the Extra Trees algorithm exhibited the highest prediction accuracy with R2 values of 0.928 for GI and 0.957 for T value. To identify the interactions between critical parameters and compost maturity, The Pearson correlation matrix and Shapley Additive exPlanations (SHAP) analysis were conducted. Furthermore, the accuracy of the models was validated through compost validation experiments. These findings highlight the potential of applying machine learning algorithms to predict green waste compost maturity and optimise process regulation.
Collapse
Affiliation(s)
- Yalin Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhuangzhuang Xue
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Dan Hao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Zhang Q, Yang S, Yang Z, Zheng T, Li P, Zhou Q, Cai W, Wang Y, Zhang J, Ji X, Li D. Effects of a novel microbial fermentation medium produced by Tremella aurantialba SCT-F3 on cigar filler leaf. Front Microbiol 2023; 14:1267916. [PMID: 37808308 PMCID: PMC10556473 DOI: 10.3389/fmicb.2023.1267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Adding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves. Methods A novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process. Results The sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community's richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, β-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and β-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas. Conclusion This research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves.
Collapse
Affiliation(s)
- Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Shuanghong Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Tianfei Zheng
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoying Ji
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| |
Collapse
|
18
|
Zhao X, Li J, Yuan H, Che Z, Xue L. Dynamics of Bacterial Diversity and Functions with Physicochemical Properties in Different Phases of Pig Manure Composting. BIOLOGY 2023; 12:1197. [PMID: 37759597 PMCID: PMC10525911 DOI: 10.3390/biology12091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Bacteria are key drivers in regulating ecosystem functions, and understanding the diversity and dynamic changes in bacteria in composting is very important for optimizing compost. This study investigated the structure, composition, and function of bacterial communities in alkaline pig manure compost using Miseq sequencing, PICRUSt2. The ACE and Chao1 indices of the bacterial communities in various phases were significantly different. Bacterial communities of alkaline pig compost were different from neutral and acidic swine manure compost, and there were 438 genera of common bacteria in various stages. The main bacterium was the phylum Firmicutes. There were six genera, including Romboutsia, Clostridium, Terrisporobacter, norank_f_Marinococcaceae, Saccharomonospora, and unclassified_f_Bacillaceae, that were significantly correlated (p < 0.05), or even extremely significantly correlated (p < 0.001), with the physicochemical properties. TOC, moisture, C/N, and Tem were the key factors that caused changes in bacterial communities in composting. PICRUSt2 analysis showed that there were seven functional groups: metabolism (45.02-48.07%), environmental information processing (15.25-16.00%), genetic information processing (16.97-20.02%), cellular processes (3.63-4.37%), human diseases (0.71-0.82%), organismal systems (0.66-0.77%), and unclassified (13.93-14.36%). This study will provide a reference for improving bacteria growth and reproduction conditions in pig manure composting, optimizing the process, and improving the efficiency of composting.
Collapse
Affiliation(s)
- Xu Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Juan Li
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Hongxia Yuan
- Laboratory of Molecular Biology, Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China;
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Lingui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| |
Collapse
|
19
|
Zhang D, Sun J, Wang D, Peng S, Wang Y, Lin X, Yang X, Hua Q, Wu P. Comparison of bacterial and fungal communities structure and dynamics during chicken manure and pig manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94347-94360. [PMID: 37531050 DOI: 10.1007/s11356-023-29056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Composting is a sustainable and eco-friendly technology that turns animal waste into organic fertilizers. It remains unclear whether differences exist in the structure of microbial communities during different livestock manure composting. This study analyzed the dynamic change of bacterial and fungal communities, metabolic function, and trophic mode during chicken manure (CM) and pig manure (PM) composting based on 16S rRNA and ITS sequencing. Environmental factors were investigated for their impact on microbial communities. During composting, bacterial diversity decreased and then increased, while fungal diversity slightly increased and then decreased. Saccharomonospora and Aspergillus were the dominant genera and key microorganisms in CM and PM, respectively, which played crucial roles in sustaining the stability of the ecological network structure in the microbial ecology and participating in metabolism. Saccharomonospora gradually increased, while Aspergillus increased at first and then decreased. PM had better microbial community stability and more keystone taxa than CM. In CM and PM, the primary function of bacterial communities was metabolism, while saprotroph was the primary trophic mode of fungal communities. Dissolved organic carbon (DOC) was the primary factor influencing the structure and function of microbial communities in CM and PM. In addition to DOC, pH and moisture were important factors affecting the fungal communities in CM and PM, respectively. These results show that the succession of bacteria and fungi in CM and PM proceeded in a similar pattern, but there are still some differences in the dominant genus and their responses to environmental factors.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 101400, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jianbin Sun
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 101400, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Danqing Wang
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Shuang Peng
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Yiming Wang
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 101400, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
- College of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Xiangui Lin
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Xiaoqian Yang
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Qingqing Hua
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Pan Wu
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
20
|
Meng J, Li W, Diao C, Li Z, Zhao J, Haider G, Zhang H, Xu J, Hu M, Shan S, Chen H. Microplastics drive microbial assembly, their interactions, and metagenomic functions in two soils with distinct pH and heavy metal availability. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131973. [PMID: 37406526 DOI: 10.1016/j.jhazmat.2023.131973] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) have emerged as widely existing global environmental concerns in terrestrial ecosystems. However, the mechanisms that how MPs are affecting soil microbes and their metagenomic functioning is currently uncertain. Herein, we investigated the response mechanisms of bacterial and fungal communities as well as the metagenomic functions to the addition of MPs in two soils with distinct pH and heavy metals. In this study, the acidic soil (Xintong) and the neutral soil (Huanshan) contaminated by heavy metals were incubated with Polyvinyl Chloride (PVC) MPs at ratios of 2.5% and 5% on 60 and 120 days. We aimed to evaluate the responding, assembly, and interactions of the metagenomic taxonomy and function. Results showed that only in the acidic soil, PVC MPs significantly increased soil pH and decreased CaCl2-extractable heavy metals, and also reduced bacterial alpha diversity and interaction networks. The relative proportions of Proteobacteria and Bacteroidota in bacteria, and Mortierellomycota in fungi, were increased, but Chloroflexi and Acidobacteriota in bacteria, Ascomycota and Basidiomycota in fungi, were significantly decreased by PVC MPs. Metagenomic functions related to C cycling were repressed but the nutrient cycles were enriched with PVC MPs. In conclusion, our study suggests that the addition of PVC MPs could shift soil microbial community and metagenomic functioning, as well as increasing soil pH and reduced heavy metal availability.
Collapse
Affiliation(s)
- Jun Meng
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenjin Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengmei Diao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhangtao Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haibo Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jun Xu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang 311400, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang 311400, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
21
|
An X, Han S, Ren X, Sichone J, Fan Z, Wu X, Zhang Y, Wang H, Cai W, Sun F. Succession of Fungal Community during Outdoor Deterioration of Round Bamboo. J Fungi (Basel) 2023; 9:691. [PMID: 37367627 DOI: 10.3390/jof9060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Bamboo's mechanical and aesthetic properties are significantly influenced by fungi. However, few studies have been conducted to investigate the structure and dynamics of fungal communities in bamboo during its natural deterioration. In this study, fungal community succession and characteristic variations of round bamboo in roofed and unroofed environments over a period of 13 weeks of deterioration were deciphered using high-throughput sequencing and multiple characterization methods. A total of 459 fungal Operational Taxonomic Units (OTUs) from eight phyla were identified. The fungal community's richness of roofed bamboo samples showed an increasing trend, whereas that of unroofed bamboo samples presented a declining trend during deterioration. Ascomycota and Basidiomycota were the dominant phyla throughout the deterioration process in two different environments: Basidiomycota was found to be an early colonizer of unroofed bamboo samples. Principal Coordinates Analysis (PCoA) analysis suggested that the deterioration time had a greater impact on fungal community variation compared to the exposure conditions. Redundancy analysis (RDA) further revealed that temperature was a major environmental factor that contributed to the variation in fungal communities. Additionally, the bamboo epidermis presented a descending total amount of cell wall components in both roofed and unroofed conditions. The correlation analysis between the fungal community and relative abundance of three major cell wall components elucidated that Cladosporium was negatively correlated with hemicellulose in roofed samples, whereas they presented a positive correlation with hemicellulose and a negative correlation with lignin in unroofed samples. Furthermore, the contact angle decreased during the deterioration process in the roofed as well as unroofed samples, which could arise from the degradation of lignin. Our findings provide novel insights into the fungal community succession on round bamboo during its natural deterioration and give useful information for round bamboo protection.
Collapse
Affiliation(s)
- Xiaojiao An
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuaibo Han
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Xin Ren
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - John Sichone
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Zhang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Wang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Cai
- Anji Zhujing Bamboo Technology Co., Ltd., Huzhou 313300, China
| | - Fangli Sun
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Zeng G, Liu Z, Guo Z, He J, Ye Y, Xu H, Hu T. Compost with spent mushroom substrate and chicken manure enhances rice seedling quality and reduces soil-borne pathogens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27681-z. [PMID: 37258808 DOI: 10.1007/s11356-023-27681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Using cultivated soils for rice seedlings can reduce the sustainability of arable land and thus giving negative impacts to food production. As a substitute, spent mushroom compost (SMC), which has high water-holding capacity and nutrient content, shows great potentials. To determine the impacts of the proportion of SMC and paddy soil on seedling quality, rhizosphere microbial characteristics, and fungal pathogens in rice seedling substrates, we conducted a 21-day pot experiment for rice seedling under five treatments: CK, 100% paddy soil; R1, 20% SMC and 80% paddy soil; R2, 50% SMC and 50% paddy soil; R3, 80% SMC and 20% paddy soil; and R4, 100% SMC. The results showed that incorporating SMC into the substrate, especially at 50% volume (R2), increased seedling growth and vitality at the seedling growth stage without external fertilization. Moreover, the SMC amendment increased microbial activity and promoted rice seedling recruitment of plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In addition, using SMC significantly reduced the abundance of pathogenic fungi, especially Magnaporthe grisea. Overall, the multi-faceted benefits exhibit the strong possibilities of using SMC in sustainable rice productions.
Collapse
Affiliation(s)
- Guiyang Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Zhihui Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Zhangliang Guo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jinfeng He
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Yingying Ye
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Huaqin Xu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| |
Collapse
|
23
|
Matheri F, Kambura AK, Mwangi M, Karanja E, Adamtey N, Wanjau K, Mwangi E, Tanga CM, Bautze D, Runo S. Evolution of fungal and non-fungal eukaryotic communities in response to thermophilic co-composting of various nitrogen-rich green feedstocks. PLoS One 2023; 18:e0286320. [PMID: 37256894 DOI: 10.1371/journal.pone.0286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Thermophilic composting is a promising soil and waste management approach involving diverse micro and macro-organisms, including eukaryotes. Due to sub-optimal amounts of nutrients in manure, supplemental feedstock materials such as Lantana camara, and Tithonia diversifolia twigs are used in composting. These materials have, however, been reported to have antimicrobial activity in in-vitro experiments. Furthermore, the phytochemical analysis has shown differences in their complexities, thus possibly requiring various periods to break down. Therefore, it is necessary to understand these materials' influence on the biological and physical-chemical stability of compost. Most compost microbiome studies have been bacterial-centric, leaving out eukaryotes despite their critical role in the environment. Here, the influence of different green feedstock on the fungal and non-fungal eukaryotic community structure in a thermophilic compost environment was examined. Total community fungal and non-fungal eukaryotic DNA was recovered from triplicate compost samples of four experimental regimes. Sequencing for fungal ITS and non-fungal eukaryotes; 18S rDNA was done under the Illumina Miseq platform, and bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 workflow in R version 4.1. Samples of mixed compost and composting day 84 recorded significantly (P<0.05) higher overall fungal populations, while Lantana-based compost and composting day 84 revealed the highest fungal community diversity. Non-fungal eukaryotic richness was significantly (P< 0.05) more abundant in Tithonia-based compost and composting day 21. The most diverse non-fungal eukaryotic biome was in the Tithonia-based compost and composting day 84. Sordariomycetes and Holozoa were the most contributors to the fungal and non-fungal community interactions in the compost environment, respectively. The findings of this study unravel the inherent influence of diverse composting materials and days on the eukaryotic community structure and compost's biological and chemical stability.
Collapse
Affiliation(s)
- Felix Matheri
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Anne Kelly Kambura
- Department of Agricultural Sciences, Taita Taveta University (TTU), Voi, Kenya
| | - Maina Mwangi
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| | - Edward Karanja
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Noah Adamtey
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Kennedy Wanjau
- International Livestock Research Institute (ILRI), Department Animal and Human Health, Nairobi, Kenya
| | - Edwin Mwangi
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - David Bautze
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Steven Runo
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| |
Collapse
|
24
|
Li H, Tan L, Zhang C, Wei X, Wang Q, Li Q, Zheng X, Xu Y. Spatial distribution of bacterial resistance towards antibiotics of rural sanitation system in China and its potential link with diseases incidence. J Environ Sci (China) 2023; 127:361-374. [PMID: 36522068 DOI: 10.1016/j.jes.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
Chinese government is vigorously promoting toilet renovation in rural areas to reduce the risk of human feces exposure, which would cause infectious diseases, especially antibiotic resistance genes (ARGs) and pathogens. However, the distribution of ARGs in human feces from different regions of China remained ill-defined. It is not yet known how the survival of ARGs after toilet treatment is associated with the regional infection rates. Here, we investigated the prevalence of ARGs in human feces in rural areas of China and their potential relationship with infectious diseases for the first large-scale. The results showed that there were still high ARGs residues in human feces after rural toilet treatment, especially tetM-01 and ermB with average relative abundance as high as 1.21 × 10-1 (Eastern) and 1.56 × 10-1 (Northern), respectively. At a large regional scale, the significant differences in human feces resistomes were mainly shaped by the toilet types, TN, NH3-N, and the bacterial community. A critical finding was that toilets still cannot effectively decrease the pathogenicity risk in human feces. The significant positive relationship (P<0.05) between infectious diseases and ARGs can infer that ARGs in human feces exposure might be a critical path for enhancing the incidence of diseases, as these ARGs hinder the effectiveness of antibiotics.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
25
|
Xiong J, Su Y, Qu H, Han L, He X, Guo J, Huang G. Effects of micro-positive pressure environment on nitrogen conservation and humification enhancement during functional membrane-covered aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161065. [PMID: 36565881 DOI: 10.1016/j.scitotenv.2022.161065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Aerobic composting is a humification process accompanied by nitrogen loss. This study is the first research systematically investigating and elucidating the mechanism by which functional membrane-covered aerobic composting (FMCAC) reduces nitrogen loss and enhances humification. The variations in bioavailable organic nitrogen (BON) and humic substances (HSs) in different composting systems were quantitatively studied, and the functional succession patterns of fungal groups were determined by high-throughput sequencing and FUNGuild. The FMCAC improved oxygen utilization and pile temperature, increased BON by 29.95 %, reduced nitrogen loss by 34.00 %, and enhanced humification by 26.09 %. Meanwhile, the FMCAC increased the competitive advantage of undefined saprotroph and significantly reduced potential pathogenic fungi (<0.10 %). Structural equation modeling indicated that undefined saprotroph facilitated the humification process by increasing the production of BON and storing BON in stable humic acid. Overall, the FMCAC increased the safety, stability, and quality of the final compost product.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Xiong J, Su Y, He X, Han L, Huang G. Effects of functional membrane coverings on carbon and nitrogen evolution during aerobic composting: Insight into the succession of bacterial and fungal communities. BIORESOURCE TECHNOLOGY 2023; 369:128463. [PMID: 36503091 DOI: 10.1016/j.biortech.2022.128463] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Carbon and nitrogen evolution and bacteria and fungi succession in two functional membrane-covered aerobic composting (FMCAC) systems and a conventional aerobic composting system were investigated. The micro-positive pressure in each FMCAC system altered the composting microenvironment, significantly increased the oxygen uptake rates of microbes (p < 0.05), and increased the abundance of cellulose- and hemicellulose-degrading microorganisms. Bacteria and fungi together influenced the conversion between carbon and nitrogen forms. FMCAC made the systems less anaerobic and decreased CH4 production and emissions by 22.16 %-23.37 % and N2O production and emissions by 41.34 %-45.37 % but increased organic matter degradation and NH3 production and emissions by 16.91 %-90.13 %. FMCAC decreased carbon losses, nitrogen losses, and the global warming potential by 7.97 %-11.24 %, 15.43 %-34.00 %, and 39.45 %-42.16 %, respectively. The functional membrane properties (pore size distribution and air permeability) affected fermentation process and gaseous emissions. A comprehensive assessment indicated that FMCAC has excellent prospects for application.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
27
|
Liu X, Rong X, Yang J, Li H, Hu W, Yang Y, Jiang G, Xiao R, Deng X, Xie G, Luo G, Zhang J. Community succession of microbial populations related to CNPS biological transformations regulates product maturity during cow-manure-driven composting. BIORESOURCE TECHNOLOGY 2023; 369:128493. [PMID: 36526118 DOI: 10.1016/j.biortech.2022.128493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The main objective of present study was to understand the community succession of microbial populations related to carbon-nitrogen-phosphorus-sulfur (CNPS) biogeochemical cycles during cow-manure-driven composting and their correlation with product maturity. The abundance of microbial populations associated with C degradation, nitrification, cellular-P transport, inorganic-P dissolution, and organic-P mineralization decreased gradually with composting but increased at the maturation phase. The abundance of populations related to N-fixation, nitrate-reduction, and ammonification increased during the mesophilic stage and decreased during the thermophilic and maturation stages. The abundance of populations related to C fixation and denitrification increased with composting; however, the latter tended to decrease at the maturation stage. Populations related to organic-P mineralization were the key manipulators regulating compost maturity, followed by those related to denitrification and nitrification; those populations were mediated by inorganic N and available P content. This study highlighted the consequence of microbe-driven P mineralization in improving composting efficiency and product quality.
Collapse
Affiliation(s)
- Xin Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Junyan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Han Li
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Wang Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Yong Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Guoliang Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Rusheng Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xingxiang Deng
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| |
Collapse
|
28
|
Zhang Z, Huang B, Gao X, Shi X, Wang X, Wang T, Wang Y, Liu G, Wang C. Dynamic changes in fecal microbiota in donkey foals during weaning: From pre-weaning to post-weaning. Front Microbiol 2023; 14:1105330. [PMID: 36778861 PMCID: PMC9915154 DOI: 10.3389/fmicb.2023.1105330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction A better understanding of the microbiota community in donkey foals during the weaning transition is a prerequisite to optimize gut function and improve feed efficiency. The objective of the present study was to investigate the dynamic changes in fecal microbiota in donkey foals from pre-to post-weaning period. Methods A total of 27 fecal samples of donkey foals were collected in the rectum before morning feeding at pre-weaning (30 days of age, PreW group, n = 9), dur-weaning (100 days of age, DurW group, n = 9) and post-weaning (170 days of age, PostW group, n = 9) period. The 16S rRNA amplicon sequencing were employed to indicate the microbial changes during the weaning period. Results In the present study, the cessation of breastfeeding gradually and weaning onto plant-based feeds increased the microbial diversity and richness, with a higher Shannon, Ace, Chao and Sobs index in DurW and PostW than in PreW (p < 0.05). The predominant bacterial phyla in donkey foal feces were Firmicutes (>50.5%) and Bacteroidota (>29.5%), and the predominant anaerobic fungi and archaea were Neocallimastigomycota and Euryarchaeota. The cellulolytic related bacteria including phylum Firmicutes, Spirochaetota and Fibrobacterota and genus norank_f_F082, Treponema, NK4A214_group, Lachnospiraceae_AC2044_group and Streptococcus were increased from pre-to post-weaning donkey foals (p < 0.05). Meanwhile, the functions related to the fatty acid biosynthesis, carbohydrate metabolism and amino acid biosynthesis were significantly enriched in the fecal microbiome in the DurW and PostW donkeys. Furthermore, the present study provided the first direct evidence that the initial colonization and establishment of anaerobic fungi and archaea in donkey foals began prior to weaning. The relative abundance of Orpinomyces were the highest in DurW donkey foals among the three groups (p < 0.01). In terms of archaea, the abundance of Methanobrevibacter were higher in PreW than in DurW and PostW (p < 0.01), but the abundance of Methanocorpusculum were significantly increased in DurW and PostW compared to PreW donkey foals (p < 0.01). Discussion Altogether, the current study contributes to a comprehensive understanding of the development of the microbiota community in donkey foals from pre-to post-weaning period, which may eventually result in an improvement of the digestion and feed efficiency in donkeys.
Collapse
|
29
|
Kong X, Luo G, Yan B, Su N, Zeng P, Kang J, Zhang Y, Xie G. Dissolved organic matter evolution can reflect the maturity of compost: Insight into common composting technology and material composition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116747. [PMID: 36436247 DOI: 10.1016/j.jenvman.2022.116747] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) can clearly reflect composting components changes, thus it is supposed to indicate the humification process during composting. To demonstrate this, three compost mixtures and two techniques were arranged. DOM evolution was detected by three spectral techniques. X-ray diffraction (XRD) showed that the crystal structure substances decreased gradually during the composting, including cellulose, struvite, sylvine, quartz, and calcite; Specifically, the struvite was found, which was conducive to the fixation of nitrogen and phosphorus. Fourier transform infrared spectroscopy (FTIR) and three-dimensional fluorescence spectroscopy (3D-EEM) further showed that pig manure-based mixtures, added cabbage, and windrow composting are beneficial to sugar, protein, fulvic acid, and soluble microbial by-products decompose and humic acids produce. This process was closely related to the change of physical-chemical parameters (temperature; pH; moisture content; and NH4+-N content) and maturity index (C/N ratio, E4/E6 and GI). Therefore, DOM evolution could quickly reflect the maturity process of compost. In subsequent research, the quantitative analysis of DOM components can be considered to modify DOM spectral parameters, or to build a model, so as to achieve rapid evaluation of compost maturity.
Collapse
Affiliation(s)
- Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Ning Su
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Peng Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jialu Kang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuping Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China.
| |
Collapse
|
30
|
Zhan Y, Chang Y, Tao Y, Zhang H, Lin Y, Deng J, Ma T, Ding G, Wei Y, Li J. Insight into the dynamic microbial community and core bacteria in composting from different sources by advanced bioinformatics methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8956-8966. [PMID: 35462586 DOI: 10.1007/s11356-022-20388-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/18/2022] [Indexed: 05/26/2023]
Abstract
Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM), food waste (FW), and vegetable waste (VW). The role and interactions of core bacteria and their contribution to maturity in diverse composts were analyzed by advanced bioinformatics methods combined sequencing with co-occurrence network and structural equation modeling (SEM). Results indicated that there were obviously different bacterial composition and diversity in composting from diverse sources. FW had a low pH and different physiochemical characteristics compared to other composts but they all achieved similar maturity products. Redundancy analysis suggested total organic carbon, phosphorus, and temperature governed the composition of microbial species but key factors were different in diverse composts. Network analysis showed completely different interactions of core bacterial community from diverse composts but Thermobifida was the ubiquitous core bacteria in composting bacterial network. Sphaerobacter and Lactobacillus as core genus were presented in the starting mesophilic and thermophilic phases of composting from manure (CM, DM, SM) and municipal solid waste (FW, VW), respectively. SEM indicated core bacteria had the positive, direct, and the biggest (> 80%) effects on composting maturity. Therefore, this study presents theoretical basis to identify and enhance the core bacteria for improving full-scale composting efficiency facing more and more organic wastes.
Collapse
Affiliation(s)
- Yabin Zhan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yuan Chang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yueyue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou, 215155, China
| | - Hao Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Yongfeng Lin
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Jie Deng
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Tiantian Ma
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guochun Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China.
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| |
Collapse
|
31
|
Jiao M, Ren X, He Y, Wang J, Hu C, Zhang Z. Humification improvement by optimizing particle size of bulking agent and relevant mechanisms during swine manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128191. [PMID: 36374714 DOI: 10.1016/j.biortech.2022.128191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
For purpose of clarifying the impact on particle size of bulking agents on humification and relevant mechanisms, different length (<2 cm, 2 cm, 5 cm, 10 cm) of branch and straw were blended with swine manure individually for 100 days aerobic composting. Results demonstrated that, 2 cm and 5 cm of branch and straw promoted the highest degradation of DOC by 41.49 % and 58.42 %, and increased the humic substances by 23.81 % and 55.82 % in maturity stage, respectively, compared with other treatments. As shown in microbial consequence, the maximum relative abundance of humus funguses increased by 99.55 % and 99.92 % at phylum, and 98.95 % and 99.24 % at genus in 2 cm and 5 cm of branch and straw treatment, thus verifying the result in variation of humus content. In a word, particle size could result in obvious impact on humification, and the optimized size were about 2 cm and 5 cm of branch and straw.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
32
|
Li Y, Zhou M, Li C, Pan X, Lv N, Ye Z, Zhu G, Zhao Q, Cai G. Inoculating indoleacetic acid bacteria promotes the enrichment of halotolerant bacteria during secondary fermentation of composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116021. [PMID: 36067675 DOI: 10.1016/j.jenvman.2022.116021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The secondary fermentation stage is critical for stabilizing composting products and producing various secondary metabolites. However, the low metabolic rate of mesophilic bacteria is regarded as the rate-limiting stage in composting process. In present study, two indoleacetic acid (IAA)-producing bacteria (Bacillus safensis 33C and Corynebacterium stationis subsp. safensis 29B) were inoculated to strengthen the secondary fermentation stage to improve the plant-growth promoting potential of composting products. The results showed that the addition of IAA-producing bacteria promoted the assimilation of soluble salt, the condensation and aromatization of humus, and the accumulation of dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). The bioaugmentation strategy also enabled faster microbial community succession during the medium-late phase of secondary fermentation. However, the colonization of Bacillus and Corynebacterium could not explain the disproportionate increase of IAA yield, which reached up to 5.6 times compared to the control group. Deeper analysis combined with physicochemical properties and microbial community structure suggested that IAA-producing bacteria might induce the increase of salinity, which enriched halotolerant bacteria capable of producing IAA, such as Halomonas, Brachybacterium and Flavobacterium. In addition, the results also proved that it was necessary to shorten secondary fermentation time to avoid IAA degradation without affecting composting maturity. In summary, enhancing secondary fermentation of composting via adding proper IAA-producing bacteria is an efficient strategy for upgrading the quality of organic fertilizer.
Collapse
Affiliation(s)
- Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhilong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| | - Quanbao Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Guanjing Cai
- Biology Department and Institute of Marine Sciences, College of Science, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
33
|
Zhang W, Zhao Y, Lu Q, Feng W, Wang L, Wei Z. Evaluating differences in humic substances formation based on the shikimic acid pathway during different materials composting. BIORESOURCE TECHNOLOGY 2022; 364:128060. [PMID: 36195217 DOI: 10.1016/j.biortech.2022.128060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate differences in humic substance (HS) formation based on the shikimic acid pathway (SAP) during five different materials composting. The results showed that compared with other three materials, gallic acid, protocatechuic acid and shikimic acid of the SAP products in lawn waste (LW) and garden waste (GW) compost decreased significantly. Furthermore, as important indicators for evaluating humification, humic acid and degree of polymerization increased by 39.4%, 79.5% and 21.8%, 87.9% in LW and GW, respectively. Correlation analysis showed that SAP products were strongly correlated with HS fractions in LW and GW. Meanwhile, network analysis indicated that more core bacteria associated with both SAP products and HS were identified in LW and GW. Finally, the structural equation model proved that SAP had more significant contribution to humification improvement in LW and GW. These findings provided theoretical foundation and feasible actions to improve compost quality by the SAP.
Collapse
Affiliation(s)
- Wenshuai Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Wenxuan Feng
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
34
|
Gao X, Yang F, Cheng J, Xu Z, Zang B, Li G, Xie X, Luo W. Emission of volatile sulphur compounds during swine manure composting: Source identification, odour mitigation and assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:129-137. [PMID: 36088860 DOI: 10.1016/j.wasman.2022.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to identify the sources of volatile sulphur compounds (VSCs) and evaluate their mitigation by ferric oxide (Fe2O3) during swine manure composting. Four chemicals, including l-cysteine, l-methionine, sodium sulphite, and sodium sulphate, were further added to simulate organic and inorganic sulphur-containing substances in swine manure to track VSC sources during composting. Results show that sulphur simulants induced the emission of six common VSCs, including methyl sulphide (Me2S), dimethyl sulphide (Me2SS), carbonyl sulphide (COS), carbon disulphide (CS2), methyl mercaptan (MeSH), and ethyl mercaptan (EtSH), during swine manure composting. Of them, COS, CS2, MeSH and Me2SS were predominantly contributed by the biodegradation of methionine and cysteine, while Me2S and EtSH were dominated by the reduction of sulphite and sulphate. Further Fe2O3 addition at 1.5 % of total wet weight of composting materials immobilized elemental sulphur and inhibited sulphate reduction to reduce the emission of VSCs by 46.7-80.9 %. Furthermore, odour assessment indicated that adding Fe2O3 into composting piles significantly reduced the odour intensity level to below 4, the odour value of VSCs by 47.1-81.3 %, and thus the non-carcinogenic risk by 68.4 %.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feiyu Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bing Zang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China
| | - Xiaomin Xie
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China.
| |
Collapse
|
35
|
Qian X, Bi X, Xu Y, Yang Z, Wei T, Xi M, Li J, Chen L, Li H, Sun S. Variation in community structure and network characteristics of spent mushroom substrate (SMS) compost microbiota driven by time and environmental conditions. BIORESOURCE TECHNOLOGY 2022; 364:127915. [PMID: 36089128 DOI: 10.1016/j.biortech.2022.127915] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Global mushroom production is growing rapidly, raising concerns about polluting effects of spent mushroom substrate (SMS) and interest in uses in composts. In this study, SMS composting trials and high-throughput sequencing were carried out to investigate to better understand how the structure, co-occurrence patterns, and functioning of bacterial and fungal communities vary through compost time and across environmental conditions. The results suggested that both bacterial and fungal microbiota displayed significant variation in community composition across different composting stages. Enzyme activity levels showed both directional and fluctuating changes during composting, and the activity dynamics of carboxymethyl cellulase, polyphenol oxidase, laccase, and catalase correlated significantly with the succession of microbial community composition. The co-occurrence networks are "small-world" and modularized and the topological properties of each subnetwork were significantly influenced by the environmental factors. Finally, seed germination and seedling experiments were performed to verify the biosafety and effectiveness of the final composting products.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohui Bi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfei Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taotao Wei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijuan Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanzhou Li
- Wuhan Benagen Technology Company, Wuhan 430000, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
36
|
Li T, Kong Z, Zhang X, Wang X, Chai L, Liu D, Shen Q. Deciphering the effect of exogenous lignocellulases addition on the composting efficiency and microbial communities. BIORESOURCE TECHNOLOGY 2022; 361:127751. [PMID: 35940325 DOI: 10.1016/j.biortech.2022.127751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to reveal the potential effects of exogenous lignocellulases addition on the composting efficiency and microbial communities. The lignocellulases addition at the mesophilic phase (MEP) greatly expedited the substrate conversion and the rise of temperature at the initial stage, driving the early arrival of thermophilic phase (THP), caused by the positive effects of Sphingobacterium and Brevundimonas. When being added at the THP, the potential functions and interactions of microbial communities were stimulated, especially for Thermobispora and Mycothermus, which prolonged the duration of the THP and expedited the humic acid formation. Simultaneous addition (MEP and THP) significantly altered the microbial community succession and activated the microbes that contributed to the lignocellulases secretion, exhibiting the highest cellobiohydrolase (36.19 ± 3.25 U· g-1 dw) and xylanase (47.51 ± 3.32 U·g-1 dw) activity at the THP. These findings provide new strategies that can be effectively utilized to improve the efficiency and quality of composting.
Collapse
Affiliation(s)
- Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhijian Kong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xiangkai Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xudong Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Lifang Chai
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Zhao Y, Cai J, Zhang P, Qin W, Lou Y, Liu Z, Hu B. Core fungal species strengthen microbial cooperation in a food-waste composting process. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100190. [PMID: 36157338 PMCID: PMC9500350 DOI: 10.1016/j.ese.2022.100190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 05/19/2023]
Abstract
In ecosystem engineering research, the contribution of microbial cooperation to ecosystem function has been emphasized. Fungi are one of the predominant decomposers in composting, but thus far, less attention has been given to fungal than to bacterial cooperation. Therefore, network and cohesion analyses were combined to reveal the correlation between fungal cooperation and organic matter (OM) degradation in ten composting piles. Positive cohesion, reflecting the cooperation degree, was positively linked to the degradation rate of OM. From the community perspective, core species (i.e., Candida tropicalis, Issatchenkia orientails, Kazachstania exigua, and Dipodascus australiensis) with high occurrence frequency and abundance were the key in regulating positive cohesion. These species were highly relevant to functional genera associated with OM degradation in both fungal and bacterial domains. Therefore, focusing on these core fungal species might be an appropriate strategy for targeted regulation of functional microbes and promotion of degradation rates.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weizhen Qin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Liang W, Jiao M, Hu E, Liu T, Ren X, Wang P, Kumar Awasthi M, Li R, Zhang Z. Magnesite driven the complementary effects of core fungi by optimizing the physicochemical parameters in pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127541. [PMID: 35777646 DOI: 10.1016/j.biortech.2022.127541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The effects of magnesite (MS) on fungi communities and the core fungi complementarity during pig manure (PM) composting were explored. Different dosage of MS [0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4) and 10% (T5)] as amendments mixed with PM for 42 days composting. The results showed the dominant of phyla were Ascomycota (78.87%), Neocallimastigomycota (41.40%), Basidiomycota (30.81%) and Aphelidiomycota (29.44%). From day 7 to 42, the abundance of Ascomycota and Aphelidiomycota were increased from 7.75% to 42.41% to 57.27%-78.87% and 0-0.70% to 11.73%-29.44% among all treatments. Nevertheless, the phyla abundance of Neocallimastigomycota and Basidiomycota decreased from day 7 to 42. The co-occurrence network indicated that the high additive amendment could enhance the core fungi complementarity effects capacity. The 10% MS addition was a promisable candidate to optimum fungal communities, and causing a better compost quality. This study illustrated the potential and fungi communities changing of MS as additives in composting.
Collapse
Affiliation(s)
- Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Endian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
39
|
Huang YH, Chen XH, Li QF, Lü H, Mo CH, Feng NX, Xiang L, Zhao HM, Li H, Li YW, Cai QY. Fungal community enhanced humification and influenced by heavy metals in industrial-scale hyperthermophilic composting of municipal sludge. BIORESOURCE TECHNOLOGY 2022; 360:127523. [PMID: 35772714 DOI: 10.1016/j.biortech.2022.127523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The succession of fungal community and effects of heavy metals on fungi during industrial-scale hyperthermophilic composting of municipal sludge remain unclear. Results showed hyperthermophilic composting enhanced decomposition and humification of municipal sludge in the short terms, while heavy metal concentrations and speciation had no significant change with high copper and zinc levels (101-122 and 292-337 mg/kg, respectively) in compost samples. The fungal community and its ecological assembly displayed dynamic change during hyperthermophilic composting. Some thermophilic-resistant fungi, such as phylum Ascomycota and genera Candida, Aspergillus, Thermomyces and Petriella dominated in hyperthermophilic phase. Heavy metals served important effects on fungal community structure and functions during composting. Some fungal drivers (e.g., Thermomyces, Petriella and Schizophyllum) and keystone fungi (e.g., Candida and Pichia) might be thermophilic- and heavy metal-resistant fungi which played important roles in decomposition and humification of municipal sludge. This study reveals fungal community accelerating humification and its influencing factors during composting.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qi-Fang Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Dynamic description of temporal changes of gut microbiota in broilers. Poult Sci 2022; 101:102037. [PMID: 35901643 PMCID: PMC9334346 DOI: 10.1016/j.psj.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/09/2022] Open
Abstract
The diversity of bacteria and fungi in the gut microbiota of commercial broilers that raised in cages from hatch to the end of the production cycle were examined by an analysis of 3,592 and 3,899 amplicon sequence variants (ASVs), respectively. More than 90% sequences in bacterial communities were related to Firmicutes and Proteobacteria. More than 90% sequences in fungal communities were related to Ascomycota, Basidiomycota, and Glomeromycota. A statistical analysis of the microbiota composition succession showed that age was one of the main factors affecting the intestinal microbial communities of broilers. The increasingly complex community succession of transient microbiota occurred along with an increase of age. This dynamic change was observed to be similar between bacteria and fungi. The gut microbiota had a special structure in the first 3 d after birth of broiler. The microbiota structure was quite stable in the period of rapid skeletal growth (d 14–21), and then changed significantly in the period of rapid gaining weight (d 35–42), thus indicating the composition of gut microbiota in broilers had unique structures at different developmental stages. We observed that several bacteria and fungi occupied key functions in the gut microbiota of broilers, suggesting that the gut homeostasis of broilers might be affected by losses of bacteria and fungi via altering interactions between microbiota. This study aimed to provide a data basis for manipulating the microbiota at different developmental stages, in order to improve production and the intestinal health of broilers.
Collapse
|
41
|
Gao Y, Zhang C, Tan L, Wei X, Li Q, Zheng X, Liu F, Wang J, Xu Y. Full-Scale of a Compost Process Using Swine Manure, Human Feces, and Rice Straw as Feedstock. Front Bioeng Biotechnol 2022; 10:928032. [PMID: 35845418 PMCID: PMC9286457 DOI: 10.3389/fbioe.2022.928032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Regarding the composting of rural waste, numerous studies either addressed the composting of a single waste component or were conducted at a laboratory/pilot scale. However, far less is known about the mixed composting effect of multi-component rural waste on a large scale. Here, we examined nutrient transformation, maturity degree of decomposition, and succession of microbial communities in large-scale (1,000 kg mixed waste) compost of multi-component wastes previously optimized by response models. The results showed that multi-component compost can achieve the requirement of maturity and exhibit a higher nutritional value in actual compost. It is worth noting that the mixed compost effectively removed pathogenic fungi, in which almost no pathogenic fungi were detected, and only two pathogenic bacteria regrown in the cooling and maturation stages. Structural equation models revealed that the maturity (germination index and the ratio of ammonium to nitrate) of the product was directly influenced by compost properties (electrical conductivity, pH, total organic carbon, moisture, temperature, and total nitrogen) compared with enzymes (cellulase, urease, and polyphenol oxidase) and microbial communities. Moreover, higher contents of total phosphorus, nitrate-nitrogen, and total potassium were conducive to improving compost maturity, whereas relatively lower values of moisture and pH were more advantageous. In addition, compost properties manifested a remarkable indirect effect on maturity by affecting the fungal community (Penicillium and Mycothermus). Collectively, this evidence implies that mixed compost of multi-component rural waste is feasible, and its efficacy can be applied in practical applications. This study provides a solution for the comprehensive treatment and utilization of rural waste.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Xu
- *Correspondence: Xiangqun Zheng, ; Yan Xu,
| |
Collapse
|
42
|
Wang M, Wang X, Wu Y, Wang X, Zhao J, Liu Y, Chen Z, Jiang Z, Tian W, Zhang J. Effects of thermophiles inoculation on the efficiency and maturity of rice straw composting. BIORESOURCE TECHNOLOGY 2022; 354:127195. [PMID: 35452824 DOI: 10.1016/j.biortech.2022.127195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The present study investigated the effects of separately or simultaneously inoculating thermophilic fungus Aspergillus fumigatus Z5 and bacterium Geobacillus stearothermophilus B5 on lignocellulose degradation, enzyme activities and humification during rice straw composting. The results indicated that inoculation of Z5 accelerated the rise of temperature in the mesophilic phase, and the degradation degree of cellulose and hemicellulose was increased by 25.3% and 20.7%, respectively, due to the higher activities of lignocellulolytic enzymes. Inoculation of B5 increased 5-7 °C of the compost temperature in the thermophilic phase, and also prolonged the duration from 33 to 41 days. Inoculated simultaneously, the secreted hydrolases of Z5 generated more nutrition and promoted the growth of B5. B5 maintained and increased the compost temperature, thus presenting a better hydrolysis environment for extracellular hydrolases. Thermophilic inoculation altered the main physicochemical factors and improved efficiency and maturity in rice straw composting.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanqing Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaosong Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhe Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
43
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2022; 12:809834. [PMID: 35601203 PMCID: PMC9122265 DOI: 10.3389/fmicb.2021.809834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
44
|
Sun Y, Liu X, Sun L, Men M, Wang B, Deng L, Zhao L, Han Y, Jong C, Bi R, Zhao M, Li X, Liu W, Shi S, Gai Z, Xu X. Microecological insight to fungal structure and key fungal communities regulating nitrogen transformation based on spatial heterogeneity during cow manure composting by multi-angle and multi-aspect analyses. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:132-142. [PMID: 35219063 DOI: 10.1016/j.wasman.2022.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Composting is the mainstream technology for the treatment of agricultural solid waste, but limited efforts were made to investigate fungal composition and its contributions to nitrogen transformation in different depths of compost. In this study, spatial distributions of fungi were analyzed using high throughput sequencing by multi-angle analyses, and the key fungal communities determining nitrogen transformation were quantified and identified by multi-aspect analyses during cow manure composting. Multi-angle analyses showed that fungal structure, biomarkers and trophic mode composition varied in different layers, revealing that spatial heterogeneity is the distinctive attribute of composting system. Ascomycota and Basidiomycota were dominant phyla during composting, the two phyla peaked in top and bottom layer respectively. At mesophilic stage, Tremellales, and unclassified Ascomycota (order) were biomarkers in top and middle layer respectively, and so were Remersonia, Pyrenochaetopsis, and Wallemia in bottom layer by LEfSe analysis. Based on multi-aspect analyses, Unclassified Dothideomycetes mainly affected NH4+-N transformation both in top (1.2816***) and middle layers (1.1726*). Trichocladium asperum (0.9536***) and Zopfiella (-0.9484***) mainly affected TN transformation in top layer. Guehomyces pullulans (-0.9684**) and Preussia (-1.0508**) regulated NO3--N transformation in middle layer. Thermomyces lanuginosus (0.7127***) and Typhula sp. UW973129 (0.7298***) were the key species promoting TN and C/N transformation in bottom layer, respectively. Interestingly, different fungal communities showed a complex network interaction driving nitrogen transformation, and the abundance of microbial community could be conducive to characterizing nitrogen transformation in the vertical space of composting.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Men
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Haeju University of Agriculture, Haeju City, Hwanghae South Province 999093, Democratic People's Republic of Korea
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoxue Gai
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Duan Y, Awasthi MK, Wu H, Yang J, Li Z, Ni X, Zhang J, Zhang Z, Li H. Biochar regulates bacterial-fungal diversity and associated enzymatic activity during sheep manure composting. BIORESOURCE TECHNOLOGY 2022; 346:126647. [PMID: 34974101 DOI: 10.1016/j.biortech.2021.126647] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Aimed to evaluate the coexistence of bacterial and fungal diversity and their correlation with enzymatic activity in response to biochar. This study performed aerobic composting based on typical agricultural wastes of sheep manure with additive apple tree branch biochar at distinct concentration (0, 2.5, 5, 7.5, 10 and 12.5% corresponding from T1 to T6). The result demonstrated that appropriate amendment of biochar enriched bacterial diversity (1646-1686 OTUs) but interestingly decreased fungal diversity (542-630 OTUs) compared to control (1444 and 682 OTUs). Biochar addition enhanced all enzymatic activities and its correlation with bacterial was more complex than fungal community (786 and 359 connect edges). The dominant microbes comprised of Firmicutes (45.2-35.2%), Proteobacteria (14.0-17.5%), Basidiomycota (32.4-49.5%) and Ascomycota (11.3-37.5%) among all the treatments. Overall, biochar regulates the composting microenvironment by influencing the microbial diversity and associated enzymatic activities.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Huanhuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jianfeng Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zelin Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xinhua Ni
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiatao Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
46
|
Zhou Y, Sun Y, Liu J, Ren X, Zhang Z, Wang Q. Effects of microplastics on humification and fungal community during cow manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150029. [PMID: 34525714 DOI: 10.1016/j.scitotenv.2021.150029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The effect of microplastics (MPs) on the biological treatment of organic waste has been extensively studied, but little is known about the influence of different MPs on composting humification and the fungal community. In this study, PE, PVC, and PHA MPs were individually mixed with cow dung and sawdust and then composted. The results showed that different MPs had various influences on humification, and the humic acid to fulvic acid ratio of all MP-added treatments (0.44-0.83) was lower than that of the control (0.91). During the composting process, Ascomycota (26.32-89.14%) and Basidiomycota (0.47-4.78%) are the dominant phyla in all treatments and all microplastics decreased the diversity and richness of the fungal community at the thermophilic stage of composting. Exposure to MPs had an obvious effect on the fungal community at the genus level, and the addition of PHA and PE MPs increased the relative abundance of phytopathogenic fungi. LEfSe and network analysis indicated that MPs reduced the number of biomarkers and led to a simpler and more unstable fungal community structure compared to the control. This study has important implications for assessing microplastic pollution and organic waste disposal.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jili Liu
- College of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agrienvironment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Xu M, Yang M, Xie D, Ni J, Meng J, Wang Q, Gao M, Wu C. Research trend analysis of composting based on Web of Science database. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59528-59541. [PMID: 34505241 DOI: 10.1007/s11356-021-16377-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Bibliometric analysis was used in this study for the quantitative evaluation of current research trends on composting. The research articles indexed from the Science Citation Index-Expanded in Web of Science database published from 2000 to 2019 were investigated. The USA, China and Spain were the top three countries considering the number of papers. Amongst the research institutes, CSIC of Spain, Chinese Academy of Sciences and Agriculture & Agri-Food Canada ranked the top three in total publication amount. Journals that published a significant number of literature regarding topics of composting included Environmental Sciences & Ecology, Agriculture and Engineering. In terms of research content, keywords such as heavy metal, heavy metal and biodegradation appeared frequently. In addition, the analysis of keywords revealed the following research hotspots in future studies: investigation of heavy metal passivator, optimisation of composting conditioner, development of all kinds of microorganisms, rational management of the composting process and improvement of solid waste life cycle assessment. To some extent, it helps to understand the current global status and trends of the related research.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Dong Xie
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jin Ni
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jie Meng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China.
| |
Collapse
|
48
|
Zhang Z, Li X, Hu X, Zhang S, Li A, Deng Y, Wu Y, Li S, Che R, Cui X. Downward aeration promotes static composting by affecting mineralization and humification. BIORESOURCE TECHNOLOGY 2021; 338:125592. [PMID: 34298334 DOI: 10.1016/j.biortech.2021.125592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A composting experiment with sewage sludge and green waste was conducted to explore the effects of aeration directions (i.e., upward and downward) on static composting systems. The compost properties, including humification indexes and organic matter loss rate, and microbial diversity during the composting, were determined. Results showed that the downward aeration promoted the homogenization of temperature and moisture of the static composting system, thereby stimulating microbial metabolism and accelerating mineralization and humification. Microbial community profiles significantly changed among the composting phases. The humification dynamics were significantly correlated with the relative abundance of multiple microbial functional groups. However, no significant effects of aeration direction on the microbial community profiles were observed. The findings indicate that downward aeration is promising to improve the quality of static compost production, by stimulating microbial metabolism rather than altering microbial community profiles.
Collapse
Affiliation(s)
- Zejin Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xi Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Song Zhang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Anning Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yongcui Deng
- Nanjing Normal University, 210023 Nanjing, China
| | - Yibo Wu
- Ningbo University, 315211 Ningbo, China
| | - Shiyu Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China.
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Qi H, Zhang A, Du Z, Wu J, Chen X, Zhang X, Zhao Y, Wei Z, Xie X, Li Y, Ye M. δ-MnO 2 changed the structure of humic-like acid during co-composting of chicken manure and rice straw. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 128:16-24. [PMID: 33957430 DOI: 10.1016/j.wasman.2021.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Improving the structure and quantity of humus is important to reduce agriculture organic waste by composting. The present study was aimed to assess the role of δ-MnO2 on humus fractions formation during co-composting of chicken manure and rice straw. Two tests (control group (CK), the addition of δ-MnO2 (M)) were carried out. The results showed that organic matter content decreased by 34% and 29% at M and CK, suggesting the process of organic waste disposal was accelerated by adding δ-MnO2. The structures and quantity of fulvic acid (FA) and humic acid (HA) (as the main fractions of humus) were investigated. The δ-MnO2 had no significant effect on improving the concentration of FA and HA (p > 0.05). However, the addition of δ-MnO2 caused different effects on the FA and HA structure. The humification degree of FA improved, while bioavailability of HA increased through adding δ-MnO2. The addition of δ-MnO2 rephased the bacterial community structure, slowing down the succession rate of the bacterial community in M composting. After adding δ-MnO2, the structural equation modeling results showed that environmental factors could directly drive changes in FA and HA by modulating the bacterial community. Furthermore, the role of FA and HA in the soil amendment was also demonstrated. Therefore, the addition of MnO2 might be promising for agriculture organic waste treatment and environmental repair during composting.
Collapse
Affiliation(s)
- Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - An Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuang Du
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Min Ye
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
50
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2021. [PMID: 35601203 DOI: 10.3389/fmicb.2021.687888/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|