1
|
Faisal S, Almutairi AW, Saif I, Ting L, Wang Q, Mustafa A, Ebaid R. Seaweed valorization as anaerobic co-substrate with fat, oil, and grease: Biomethane potential and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 421:132155. [PMID: 39921007 DOI: 10.1016/j.biortech.2025.132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The present study explored the anaerobic co-digestion (AcD) of seaweed Gracilaria vermiculophylla with fat, oil, and grease (FOG) at 75, 50, and 25 % w/w of volatile solids (VS). Mono-digestion of FOG and SW led to a methane production of 133 and 109 mL/(g.d) with 40 days lag-phase, lower than 235 mL/(g.d) of AcD at FOG-50:SW-50 with reduced lag-phase of 20 days. The palmitic and oleic acid reduction was 95 % in the reactors FOG-50:SW-50, followed by FOG-25:SW-75, which was 84 %, as compared to FOG mono-digestion (47 %). Relative abundance of Firmicutes, Chloroflexi, and Bacteroidetes were enriched during AcD. The relative abundance of Methanosaeta was enhanced (40-90 %) in FOG-50:SW-50 compared with FOG-100:SW-0 as the reduction in Methanosaeta was replaced by Methanoculleus (30 %) and RuMen-M2 (10 %). The present study offers essential perspectives for the AcD of FOG with SW, showcasing the benefits of SW as a co-substrate for improved methane recovery from FOG.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China.
| | - Adel W Almutairi
- Biological Sciences Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Irfan Saif
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000 Gansu Province, PR China
| | - Li Ting
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106 PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ebaid
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg 22609 Hamburg, Germany; Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| |
Collapse
|
2
|
Perego C, König R, Cuomo M, Pianta E, Maye S, Di Maggio L, Moser M, Fischer F, Principi P. Shewanella oneidensis and Methanosarcina barkerii augmentation and conductive material effects on long-term anaerobic digestion performance. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:10. [PMID: 39838449 PMCID: PMC11753057 DOI: 10.1186/s13068-025-02609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
This study explores the use of conductive material in scaling up anaerobic digestion for enhanced biogas production. Focusing on Direct Interspecies Electron Transfer (DIET), the research employs a syntrophic DIET-able consortium formed by Shewanella oneidensis and Methanosarcina barkerii in 3.8-L experiments utilizing reticulated vitreous carbon (RVC) as conductive material. In short-term tests with acetate the syntrophic co-culture with RVC resulted in 86% higher maximum velocity of methane production, while in long term with real feed 13% increased rate was observed: the addition of 1.77 (S/m)*m2 RVC resulted in a faster methane production of 2.39 mL/gVS*h compared to 2.08 mL/gVS*h of the reference. The experimental conditions of syntrophic inoculum and RVC as conductive material gave a benefit in terms of process rate compared to the reference, considering the inoculum fate, Methanosarcina barkerii was among the dominant taxa at the end of the experiment, while Shewanella oneidensis was outcompeted. Among the methanogenesis production pathways, an increase of hydrogenotrophic methanogenesis has been observed in presence of conductive material. Further research is needed to understand the role of RVC in sulfur compounds production. Utilization of RVC to augment methane production yielded interesting results for real-scale application. As an added carrier, RVC remains unaltered and can be readily recuperated and reused multiple times.
Collapse
Affiliation(s)
- Camilla Perego
- Environmental Biotechnologies, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland
| | - Roger König
- Environmental Biotechnologies, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland
| | - Maurizio Cuomo
- Environmental Biotechnologies, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland
| | - Elisa Pianta
- Hygiene and the Environment, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland
| | - Sunny Maye
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950, Sion, Switzerland
| | - Loredana Di Maggio
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950, Sion, Switzerland
| | - Michel Moser
- Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland
| | - Fabian Fischer
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950, Sion, Switzerland
| | - Pamela Principi
- Environmental Biotechnologies, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland.
| |
Collapse
|
3
|
Braga CSN, Martins G, Duarte MS, Soares OSGP, Pereira MFR, Pereira IAC, Alves MM, Pereira L, Salvador AF. Microbial activity of the inoculum determines the impact of activated carbon, magnetite and zeolite on methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178340. [PMID: 39778450 DOI: 10.1016/j.scitotenv.2024.178340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)). The inocula included pure cultures of methanogens, syntrophic cocultures, and complex microbial communities, and the kinetic parameters assessed were the lag phase duration and methane production rates (MPR). The results showed that the microbial activity of the inocula is an important factor determining materials' effect on MP kinetics. AC, Mag, and Zeo significantly enhanced the MP profiles of less active microbial communities or low-active microorganisms by decreasing lag phases duration up to 85 %, consequently increasing MPR up to 15 times. Contrarily, these materials did not affect highly active microbial communities or pure cultures, as MP profiles tend to be similar with and without materials. These results indicate that from an applied point of view, the addition of materials to anaerobic bioreactors should be considered only when the methanogenic activity of the sludge is low or compromised.
Collapse
Affiliation(s)
- Cátia S N Braga
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - O Salomé G P Soares
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luciana Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
4
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Fazzino F, Frontera P, Malara A, Pedullà A, Calabrò PS. Effects of carbon-based conductive materials on semi-continuous anaerobic co-digestion of organic fraction of municipal solid waste and waste activated sludge. CHEMOSPHERE 2024; 357:142077. [PMID: 38643843 DOI: 10.1016/j.chemosphere.2024.142077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Organic fraction of municipal solid waste (OFMSW) and waste activated sludge (WAS) are the most produced organic waste streams in urban centres. Their anaerobic co-digestion (AcoD) allows to generate methane (CH4) and digestate employable as renewable energy source and soil amendment, respectively, fully in accordance with circular bioeconomy principles. However, the widespread adoption of such technology is limited by relatively low CH4 yields that fail to bridge the gap between benefits and costs. Among strategies to boost AcoD of OFMSW and WAS, use of conductive materials (CMs) to promote interspecies electron transfer has gained increasing attention. This paper presents one of the few experimental attempts of investigating the effects of four different carbon(C)-based CMs (i.e., granular activated carbon - GAC, graphite - GR, graphene oxide - GO, and carbon nanotubes - CNTs) separately added in semi-continuous AcoD of OFMSW and thickened WAS. The presence of C-based CMs has been observed to improve CH4 yield of the control process. Specifically, after 63 days of operation (concentrations of GAC and GR of 10.0 g/L and of GO and CNTs of 0.2 g/L), 0.186 NL/gVS, 0.191 NL/gVS, 0.203 NL/gVS, and 0.195 NL/gVS of CH4 were produced in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.177 NL/gVS produced in the control process. Likewise, at the end of the test (i.e., after 105 days at concentrations of C-based CMs half of the initial ones), CH4 yields were 0.193 NL/gVS, 0.201 NL/gVS, 0.211 NL/gVS, and 0.206 NL/gVS in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.186 NL/gVS of the control process. Especially with regard to GR, GO, and CNTs, results obtained in the present study represent a significant advance of the knowledge on the effects of such C-based CMs to realistic and scalable AD process conditions respect to previous literature.
Collapse
Affiliation(s)
- Filippo Fazzino
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria, 6, Catania, Italy
| | - Patrizia Frontera
- Department of Civil, Energy, Environmental and Materials Engineering, Mediterranea University of Reggio Calabria, Via Zehender, loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Angela Malara
- Department of Civil, Energy, Environmental and Materials Engineering, Mediterranea University of Reggio Calabria, Via Zehender, loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Altea Pedullà
- Department of Civil, Energy, Environmental and Materials Engineering, Mediterranea University of Reggio Calabria, Via Zehender, loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Paolo S Calabrò
- Department of Civil, Energy, Environmental and Materials Engineering, Mediterranea University of Reggio Calabria, Via Zehender, loc. Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
6
|
Daskiran F, Gulhan H, Kara E, Guven H, Ozgun H, Ersahin ME. Environmental impact of sewage sludge co-digestion with food waste and fat-oil-grease: Integrating plant-wide modeling with life cycle assessment approach. BIORESOURCE TECHNOLOGY 2024; 394:130198. [PMID: 38103751 DOI: 10.1016/j.biortech.2023.130198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Anaerobic co-digestion of fat-oil-grease (FOG) and food waste (FW) with sewage sludge (SS) in wastewater treatment plants is a method used to increase biogas production. In this study, digestion scenarios were compared using plant-wide modeling and life cycle assessment: Scenario-0 (mono-digestion of waste-activated sludge (WAS)), Scenario-1 (co-digestion of WAS with FOG), and Scenario-2 (co-digestion of WAS with FW). Scenario-0, with the highest energy use and landfilling of FOG/FW, has the worst environmental impact. Scenario-1 and Scenario-2 minimize the environmental load by energy recovery and avoiding landfilling of organic waste. Scenario-wise, the change in greenhouse gas (GHG) emissions from treatment was negligible. However, due to the impact of landfilling, GHG emissions in Scenario-0 were 21% and 30% higher than in Scenario-1 and 2, respectively. The environmental benefit of anaerobic co-digestion of FOG/FW with SS is not only in the contribution to energy production but also in the recycling of organic waste.
Collapse
Affiliation(s)
- Filiz Daskiran
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Hazal Gulhan
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Emircan Kara
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Huseyin Guven
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Hale Ozgun
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| |
Collapse
|
7
|
Valentin MT, Luo G, Zhang S, Białowiec A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:146. [PMID: 37784139 PMCID: PMC10546780 DOI: 10.1186/s13068-023-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
This paper explores the mechanisms of biochar that facilitate direct interspecies electron transfer (DIET) among syntrophic microorganisms leading to improved anaerobic digestion. Properties such as specific surface area (SSA), cation exchange capacity (CEC), presence of functional groups (FG), and electrical conductivity (EC) were found favorable for increased methane production, reduction of lag phase, and adsorption of inhibitors. It is revealed that these properties can be modified and are greatly affected by the synthesizing temperature, biomass types, and residence time. Additionally, suitable biochar concentration has to be observed since dosage beyond the optimal range can create inhibitions. High organic loading rate (OLR), pH shocks, quick accumulation and relatively low degradation of VFAs, and the presence of heavy metals and toxins are the major inhibitors identified. Summaries of microbial community analysis show fermentative bacteria and methanogens that are known to participate in DIET. These are Methanosaeta, Methanobacterium, Methanospirillum, and Methanosarcina for the archaeal community; whereas, Firmicutes, Proteobacteria, Synergistetes, Spirochetes, and Bacteroidetes are relatively for bacterial analyses. However, the number of defined cocultures promoting DIET is very limited, and there is still a large percentage of unknown bacteria that are believed to support DIET. Moreover, the instantaneous growth of participating microorganisms has to be validated throughout the process.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Science and Technology, Engineering and Industrial Research, National Research Council of the Philippines, Taguig, Philippines
- Benguet State University, Km. 5, La Trinidad, 2601 Benguet, Philippines
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011 USA
| |
Collapse
|
8
|
Li J, Xu X, Chen C, Xu L, Du Z, Gu L, Xiang P, Shi D, Huangfu X, Liu F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. ENVIRONMENTAL RESEARCH 2023; 227:115779. [PMID: 36967003 DOI: 10.1016/j.envres.2023.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Ping Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaoliu Huangfu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
9
|
Kalantzis D, Daskaloudis I, Lacoere T, Stasinakis AS, Lekkas DF, De Vrieze J, Fountoulakis MS. Granular activated carbon stimulates biogas production in pilot-scale anaerobic digester treating agro-industrial wastewater. BIORESOURCE TECHNOLOGY 2023; 376:128908. [PMID: 36934908 DOI: 10.1016/j.biortech.2023.128908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This work examines the continuous addition (5 g/L) of conductive granular activated carbon (GAC) in an integrated pilot-scale unit containing an anaerobic digester (180 L) and an aerobic submerged membrane bioreactor (1600 L) connected in series for the treatment of agro-industrial wastewater. Biogas production increased by 32 % after the addition of GAC. Methanosaeta was the dominant methanogen in the digester, and its relative abundance increased after the addition of GAC. The final effluent after post-treatment with the aerobic membrane bioreactor had a total solids content <0.01 g/L and a chemical oxygen demand between 120 and 150 mg/L. A simple cost analysis showed that GAC addition is potentially profitable, but alternatives ways of retaining the GAC in the system need to be found. Overall, this study provides useful scientific data for the possible application of GAC in full-scale biogas projects.
Collapse
Affiliation(s)
- Demetrios Kalantzis
- Department of Environment, University of the Aegean, University Hill, Mytilene, Greece
| | - Ioannis Daskaloudis
- Department of Environment, University of the Aegean, University Hill, Mytilene, Greece
| | - Tim Lacoere
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-900 Gent, Belgium
| | | | - Demetris F Lekkas
- Department of Environment, University of the Aegean, University Hill, Mytilene, Greece
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-900 Gent, Belgium
| | | |
Collapse
|
10
|
Liu C, Li S, Niu H, Yang H, Tan J, Zhang J, Ren L, Yan B. Effect of Lipid Type on the Acidogenic Performance of Food Waste. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Due to its high lipid content and intricate constitution, food waste poses a considerable challenge for biotreatment. This research aims to investigate the potential influence of diverse lipid species on anaerobic fermentation, induced by the varying dietary patterns observed in distinct regions. The investigation involved incorporating 5% (w/w) of beef tallow, mutton fat, soybean oil, peanut oil, and rapeseed oil, separately, into simulated food waste, and subjected it to batch mode acidogenic fermentation. The inclusion of unsaturated fatty acids resulted in a redirection of the metabolic pathway from the lactic acid type to the ethanol, acetic acid, and butyric acid types. The succession of the acidogenic metabolic pathway was highly correlated with the lipid types; beef tallow, mutton fat, soybean oil, and peanut oil delayed the metabolic process by 1, 2, 3, and 8 d, respectively, whereas rapeseed oil accelerated it by 2 d. The lipids contained within the food waste did not facilitate the buildup of soluble substances, resulting in a decrease of 14.0~59.7%. Notwithstanding, valeric acid was exclusively generated during the beef tallow and peanut oil treatments, whereas the production of lactic acid in peanut oil showed a 35.9% increase in comparison to the control.
Collapse
Affiliation(s)
- Chao Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Hongyu Niu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Haijun Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ju Tan
- Changsha Environmental Monitoring Center Station, Changsha 410001, China
| | - Jiachao Zhang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Liheng Ren
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
11
|
Feng L, He S, Gao Z, Zhao W, Jiang J, Zhao Q, Wei L. Mechanisms, performance, and the impact on microbial structure of direct interspecies electron transfer for enhancing anaerobic digestion-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160813. [PMID: 36502975 DOI: 10.1016/j.scitotenv.2022.160813] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Direct interspecies electron transfer (DIET) has been received tremendous attention, recently, due to the advantages of accelerating methane production via organics reduction during anaerobic digestion (AD) process. DIET-based syntrophic relationships not only occurred with the existence of pili and some proteins in the microorganism, but also can be conducted by conductive materials. Therefore, more researches into understanding and strengthening DIET-based syntrophy have been conducted with the aim of improving methanogenesis kinetics and further enhance methane productivity in AD systems. This study summarized the mechanisms, application and microbial structures of typical conductive materials (carbon-based materials and iron-based materials) during AD reactors operation. Meanwhile, detail analysis of studies on DIET (from substrates, dosage and effectiveness) via conductive materials was also presented in the study. Moreover, the challenges of applying conductive materials in boosting methane production were also proposed, which was supposed to provide a deep insight in DIET for full scale application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Xu W, He X, Wang C, Zhao Z. Effect of granular activated carbon adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer during anaerobic digestion of fat, oil, and grease. BIORESOURCE TECHNOLOGY 2023; 368:128289. [PMID: 36372383 DOI: 10.1016/j.biortech.2022.128289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
To investigate the effect of granular activated carbon (GAC) adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer (DIET) during anaerobic digestion of fat, oil, and grease (FOG), seed sludge was divided into two inocula (big (>0.85 mm)/small (0.15-0.85 mm)) for FOG digestion with/without GAC. More long-chain fatty acids (LCFAs) were adsorbed on GAC in the reactor with small aggregates than that with big aggregates, corresponding to 57 % and 10 % decreased methane production, respectively. Adsorption of unsaturated LCFAs (e.g., oleic acid) on GAC was found to reduce LCFA bioavailability, hinder DIET via GAC, and change community structure. Compared to pre-adsorption of oleic acid on GAC, pre-attachment of microbes on GAC resulted in 5.6-fold higher methane yield for oleic acid digestion. Together, competition of LCFA adsorption between GAC and microbial aggregates is essential for enhanced methane recovery from FOG digestion via GAC-induced DIET.
Collapse
Affiliation(s)
- Weijia Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China.
| | - Chun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Zihao Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| |
Collapse
|
13
|
Deng G, Zhang T, Wang W, Lv Y, Deng H, Lu W, Cheng X. Enhancement from Anaerobic Digestion of Food Waste by Conductive Materials: Performance and Mechanism. ACS OMEGA 2022; 7:40782-40788. [PMID: 36406521 PMCID: PMC9670704 DOI: 10.1021/acsomega.2c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Conductive materials (CM) have recently attracted research interest in the anaerobic digestion of food waste to achieve reduction and resource utilization. Fe-metal organic frameworks (Fe-MOF) and Ketjen Black (KB), the conductive materials (CMs), were added for the enhancement of food waste digestion. This study therefore, is intended to fill in this knowledge gap and clarify the underlying mechanism of CM-promoted performance. Batch experiments revealed that the optimal additions of Fe-MOF and KB were 0.5 g·L-1 and 0.2 g·L-1, respectively. The biogas production increased by 27.50% and 29.45% compared with the blank group, and the removal efficiency of volatile solids (VS), total solids (TS), and chemical oxygen demand (COD) increased by 18.28%, 40.52%, and 15.31%. The lag period was shortened from 3.042 to 2.006 and 1.544 days, respectively. Mechanism studies revealed that Fe-MOF and KB were beneficial to food waste digestion, and the functional groups of Fe-MOF and KB increased the buffer capacity of the system to pH and ammonia nitrogen. The physicochemical properties of Fe-MOF and KB promote the activity of the electron transfer system (ETS); the ETS activity was about 2 times the 11.32 mg·(g·h)-1 of the blank group. Zeta potential and electrical conductivity were beneficial to the establishment of intermicrobial direct interspecies electron transfer (DIET).
Collapse
Affiliation(s)
| | - Tianyi Zhang
- Guizhou
University, Guiyang550025, Guizhou, China
| | - Wan Wang
- Guizhou
University, Guiyang550025, Guizhou, China
| | - Yanlin Lv
- Guizhou
University, Guiyang550025, Guizhou, China
| | | | - Wenxu Lu
- Guizhou
University, Guiyang550025, Guizhou, China
| | - Xiaoge Cheng
- Guizhou
University, Guiyang550025, Guizhou, China
| |
Collapse
|
14
|
He X, Xu W, Lu J, Wu J, Guo Z, Wei X, Wang C. Enhanced direct interspecies electron transfer and methane production during anaerobic digestion of fat, oil, and grease by coupling carbon-based conductive materials and exogenous hydrogen. BIORESOURCE TECHNOLOGY 2022; 364:128083. [PMID: 36216280 DOI: 10.1016/j.biortech.2022.128083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
To investigate the combination of carbon-based conductive materials and exogenous hydrogen (EH2) on methane recovery from fat, oil, and grease (FOG), granular activated carbon (GAC) and carbon cloth (CC) were chosen to collaborate with EH2, resulting in increased methane production by 59 % and 84 %, respectively. Further digestion of long chain fatty acids (LCFAs) confirms that enhanced direct interspecies electron transfer (DIET) was achieved in the reactors with GAC/CC + EH2 than those with GAC/CC only. Other evidences (such as increased microbial population and rapid degradation of volatile fatty acids) were found to support the role of GAC/CC + EH2 in promotion of DIET. Significant change of microbial community was observed using GAC/CC + EH2, which was mainly attributed to the enrichment of electrogenic species (such as Spirochaetaceae, Syntrophomonas palmitatica, and Methanosaeta), leading to some changes in metabolic pathways during acidogenesis and methanogenesis. Together, enhanced DIET was achieved by GAC/CC + EH2, thus improving the methane recovery from FOG.
Collapse
Affiliation(s)
- Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Weijia Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China.
| | - Jun Wu
- Yantai Research Institute, Harbin Engineering University, Yantai, Shandong 264006, China
| | - Zhenyu Guo
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Xuerui Wei
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Chun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| |
Collapse
|
15
|
Al Hasani Z, Kumar Nayak J, Alhimali H, Al-Mamun A. Enhancing methane production of co-digested food waste with granular activated carbon coated with nano zero-valent iron in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 363:127832. [PMID: 36029986 DOI: 10.1016/j.biortech.2022.127832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) possesses dual benefits of waste treatment and energy generation. The use of conductive additives in AD matrix has potential to improve process yield. Hence, the study aimed to investigate a thermophilic AD (TAD) inserted by granular activated carbon coated with nano zero-valent iron (GAC/nZVI) in the matrix and was operated for mono-digestion and co-digestion of cow manure with food wastes (rice and bread) to check the bioprocess improvement. The results were compared with the control TAD without conductive additives. Biogas production increased by 11 folds upon using GAC/nZVI addition compared to the control TAD. Moreover, the addition of GAC/nZVI increased the methane in biogas by 20.7 folds compared to control one. With GAC/nZVI, the maximum COD removal of 78.29% and 85.21% were noticed for co-digestion and mono digestion, respectively. Such improvement of TAD performance was due to easy bacterial communication and electron exchange through the conductive particles.
Collapse
Affiliation(s)
- Zahra Al Hasani
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Jagdeep Kumar Nayak
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Halima Alhimali
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
16
|
Xu XJ, Yan J, Yuan QK, Wang XT, Yuan Y, Ren NQ, Lee DJ, Chen C. Enhanced methane production in anaerobic digestion: A critical review on regulation based on electron transfer. BIORESOURCE TECHNOLOGY 2022; 364:128003. [PMID: 36155810 DOI: 10.1016/j.biortech.2022.128003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a potential bioprocess for waste biomass utilization and energy conservation. Various iron/carbon-based CMs (e.g., magnetite, biochar, granular activated carbon (GAC), graphite and zero valent iron (ZVI)) have been supplemented in anaerobic digestors to improve AD performance. Generally, the supplementation of CMs has shown to improve methane production, shorten lag phase and alleviate environmental stress because they could serve as electron conduits and promote direct interspecies electron transfer (DIET). However, the CMs dosage varied greatly in previous studies and CMs wash out remains a challenge for its application in full-scale plants. Future work is recommended to standardize the CMs dosage and recover/reuse the CMs. Moreover, additional evidence is required to verify the electrotrophs involved in DIET.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qing-Kang Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
17
|
Yang J, Zhao YG, Liu X, Fu Y. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater. MARINE POLLUTION BULLETIN 2022; 182:114013. [PMID: 35939936 DOI: 10.1016/j.marpolbul.2022.114013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Remediation of mariculture wastewater is of great practical importance. In this study, sediment microbial fuel cells (SMFCs) were adopted and carbon felt anodes were modified to enhance COD and ammonia removal in mariculture system. The results showed that the SMFC anode with 5 % (w/w) graphene oxide (GO) coating performed best in pollutants removal and electricity generation. The maximum power density approached 132 mW/m2, nearly 4.5 times higher than the unmodified anode. The removal efficiency of COD and ammonia reached 82.1 % and 95.8 % respectively, both improved compared with the control and chemical modification. The modified anode effectively enriched the electrogenic Sulfurovum and Lactobacillus and thus led to a significant improvement in the electrochemical performance of SMFC. This study demonstrates the successful application of SMFCs with GO modified anodes in the in-situ removing pollutants and SMFCs present obvious remediation potential on the contaminated mariculture inhabitant.
Collapse
Affiliation(s)
- Jingyue Yang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Xinpei Liu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yubin Fu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
18
|
Kutlar FE, Tunca B, Yilmazel YD. Carbon-based conductive materials enhance biomethane recovery from organic wastes: A review of the impacts on anaerobic treatment. CHEMOSPHERE 2022; 290:133247. [PMID: 34914946 DOI: 10.1016/j.chemosphere.2021.133247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Amongst the most important sustainable waste management strategies, anaerobic biotechnology has had a central role over the past century in the management of high-pollution load sources, such as food, agricultural and municipal wastes. During anaerobic digestion (AD), valuable by-products such as digestate and biogas are produced. Biogas (mainly composed of methane) is generated through a series of reactions between bacteria and archaea. Enhancement of AD process with higher methane yield, accelerated methane production rate, and shorter start-up time is possible via tapping into a novel methanogenic pathway discovered a decade ago. This fundamentally new concept that is a substitute to interspecies hydrogen transfer is called direct interspecies electron transfer (DIET). DIET, a thermodynamically more feasible way of electron transfer, has been proven to occur between bacteria and methanogens. It is well-documented that amendment of carbon-based conductive materials (CCMs) can stimulate DIET via serving as an electrical conduit between microorganisms. Therefore, different types of CCMs such as biochar and activated carbon have been amended to a variety of AD reactors and enhancement of process performance was reported. In this review, a comparative analysis is presented for enhancement of AD performance in relation to major CCM related factors; electrical conductivity, redox properties, particle size and dosage. Additionally, the impacts of AD operational conditions such as organic loading rate and temperature on CCM amended reactors were discussed. Further, the changes in microbial communities of CCM amended reactors were reviewed and future perspectives along with challenges for CCM application in AD have been provided.
Collapse
Affiliation(s)
- Feride Ece Kutlar
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Berivan Tunca
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Yasemin Dilsad Yilmazel
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
19
|
Wu K, Xu W, Wang C, Lu J, He X. Saponification with calcium has different impacts on anaerobic digestion of saturated/unsaturated long chain fatty acids. BIORESOURCE TECHNOLOGY 2022; 343:126134. [PMID: 34655784 DOI: 10.1016/j.biortech.2021.126134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the influence of the saturation degree of long chain fatty acids (LCFAs) on the bio-methane potential of calcium-LCFAs salts. In this study, palmitic acid and oleic acid were chosen as the model compounds to investigate the impact of saponification between calcium and saturated/unsaturated LCFAs on the methane recovery from LCFAs in anaerobic digestion. A 2.2-fold enhancement of methane yield was obtained due to the formation of calcium palmitate, which was primarily attributed to the enhanced bio-aggregation and significant change of microbial community. However, saponification between calcium and oleic acid decreased the methane recovery from oleic acid digestion. Only partial saponification with excess oleic acid led to 4% increment of methane production. The low bio-accessibility of calcium oleate and the little change of microbial community may be responsible for the small difference of methane recovery due to the formation of calcium oleate.
Collapse
Affiliation(s)
- Kun Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Weijia Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Chun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China
| | - Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, PR China.
| |
Collapse
|
20
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
21
|
Nguyen LN, Vu MT, Abu Hasan Johir M, Pernice M, Ngo HH, Zdarta J, Jesionowski T, Nghiem LD. Promotion of direct interspecies electron transfer and potential impact of conductive materials in anaerobic digestion and its downstream processing - a critical review. BIORESOURCE TECHNOLOGY 2021; 341:125847. [PMID: 34467893 DOI: 10.1016/j.biortech.2021.125847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Addition of conductive materials (CMs) has been reported to facilitate direct interspecies electron transfer (DIET) and improved anaerobic digestion (AD) performance. This review summarises the benefits and outlines remaining research challenges of the addition of CMs with a focus on the downstream processing of AD. CM addition may alter biogas quality, digestate dewaterability, biosolids volume, and centrate quality. Better biogas quality has been observed due to the adsorption of H2S to metallic CMs. The addition of CMs results in an increase in solid content of the digestate and thus an additional requirement for sludge dewatering and handling and the final biosolids volume for disposal. This review highlights the need for more research at pilot scale to validate the benefits of CM addition and to evaluate CM selection, doses, material costs, and the impact on downstream processes. The lack of research on the impact of CMs on the downstream process of AD is highlighted.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2220, Australia.
| | - Minh T Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2220, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2220, Australia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2220, Australia
| |
Collapse
|
22
|
Kumar Khanal S, Lü F, Wong JWC, Wu D, Oechsner H. Anaerobic digestion beyond biogas. BIORESOURCE TECHNOLOGY 2021; 337:125378. [PMID: 34166927 DOI: 10.1016/j.biortech.2021.125378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a matured technology for waste (water) remediation/stabilization and bioenergy generation in the form of biogas. AD technology has several inherent benefits ranging from generating renewable energy, remediating waste (water), and reducing greenhouse gas emission to improving health/hygiene and the overall socio-economic status of rural communities in developing nations. In recent years, there has been a paradigm shift in applications of AD technology beyond biogas. This special issue (SI) entitled, "Anaerobic Digestion Beyond Biogas (ADBB-2021)," was conceptualized to incorporate some of the recent advances in AD in which the emphasis is beyond biogas, such as anaerobic biorefinery, chain elongation, treatment of micropollutants, toxicity and system stability, digestate as biofertilizer, bio-electrochemical systems, innovative bioreactors, carbon sequestration, biogas upgrading, microbiomes, waste (water) remediation, residues/waste pre-treatment, promoter addition, and modeling, process control, and automation, among others. This VSI: ADBB-2021 contains 53 manuscripts (14 critical reviews and 39 research). The key findings of each manuscript are briefly summarized here, which can serve as a valuable resource for AD researchers to learn of major advances in AD technology and identify future research directions.
Collapse
Affiliation(s)
- Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Fan Lü
- College of Environmental Science and Technology, Tongji University, Shanghai, China
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon Tong, Hong Kong, China
| | - Hans Oechsner
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany
| |
Collapse
|