1
|
Zhang M, Zhao X, Ren X. Research Progress on the Mechanisms of Algal-Microorganism Symbiosis in Enhancing Large-Scale Lipid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6345-6360. [PMID: 40045656 DOI: 10.1021/acs.jafc.4c11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Microalgae, characterized by their exceptional lipid content, rapid growth, and robust adaptability, represent a promising biological resource. In natural and engineered ecosystems, microalgae engage in intricate symbiotic relationships with diverse microorganisms, a dynamic interplay essential for ecological resilience and metabolic optimization. This review examines the role of symbiotic microorganisms in microalgal growth and lipid accumulation, with particular emphasis on the biological regulatory mechanisms that govern these processes. These include nutrient exchange, phytohormone-mediated growth stimulation, cofactors, and quorum-sensing-driven community coordination. The review highlights how these microbial interactions facilitate optimal lipid production by enhancing metabolic pathways, thereby improving the efficiency of lipid accumulation in microalgae. Furthermore, the review investigates horizontal gene transfer as an evolutionary driver that fortifies algal-microbial consortia against environmental stressors, enabling robust performance in fluctuating conditions. The integration of these biological insights holds transformative potential for advancing next-generation bioenergy platforms, where algal-microbial systems could play a pivotal role in enhancing biofuel production, wastewater treatment, and sustainable agriculture.
Collapse
Affiliation(s)
- Meiyu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xinhe Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaojie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, International Cooperative Joint Laboratory for Marine Microbial Cell Factories, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
2
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Song X, Ju Y, Chen L, Zhang W. Strategies and tools to construct stable and efficient artificial coculture systems as biosynthetic platforms for biomass conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:148. [PMID: 39702246 DOI: 10.1186/s13068-024-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Inspired by the natural symbiotic relationships between diverse microbial members, researchers recently focused on modifying microbial chassis to create artificial coculture systems using synthetic biology tools. An increasing number of scientists are now exploring these systems as innovative biosynthetic platforms for biomass conversion. While significant advancements have been achieved, challenges remain in maintaining the stability and productivity of these systems. Sustaining an optimal population ratio over a long time period and balancing anabolism and catabolism during cultivation have proven difficult. Key issues, such as competitive or antagonistic relationships between microbial members, as well as metabolic imbalances and maladaptation, are critical factors affecting the stability and productivity of artificial coculture systems. In this article, we critically review current strategies and methods for improving the stability and productivity of these systems, with a focus on recent progress in biomass conversion. We also provide insights into future research directions, laying the groundwork for further development of artificial coculture biosynthetic platforms.
Collapse
Affiliation(s)
- Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Ju
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China.
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
4
|
Pereira ASADP, Magalhães IB, Silva TA, Reis AJDD, Couto EDAD, Calijuri ML. Municipal and industrial wastewater blending: Effect of the carbon/nitrogen ratio on microalgae productivity and biocompound accumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122760. [PMID: 39383743 DOI: 10.1016/j.jenvman.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67). The wastewater mixture favored the removal of dissolved organic carbon (75.61 and 81.90%) and soluble chemical oxygen demand (66.78-88.85%), compared to the treatment composed exclusively of MW (T7). Treatments T3 and T6 (C/N ratio equal to 30.67 and 7.52, respectively) showed higher Chlorophyll-a concentrations, 1.47 and 1.54 times higher than T7 (C/N ratio 1.75). It was also observed that the C/N ratio of 30.67 favored the accumulation of carbohydrates and lipids (30.07% and 26.39%, respectively), while the C/N ratio of 7.52 improved protein accumulation (33.00%). The fatty acids C16:0, C18:1, C18:2, and C18:3 had the highest concentrations. Additionally, increasing the C/N ratio can be an efficient strategy to improve the production of fatty acids for biofuels, mainly due to the increased concentration of shorter-chain fatty acids (C16:0). These findings suggest that blending wastewater not only enhances treatment performance but also increases the accumulation of valuable carbohydrates and lipids in MB, and optimizes fatty acid production for biofuel applications. This research represents significant progress towards feasibility of using MB produced from wastewater.
Collapse
Affiliation(s)
| | - Iara Barbosa Magalhães
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | - Thiago Abrantes Silva
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | | | | | - Maria Lucia Calijuri
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Yan W, Cao Z, Ding M, Yuan Y. Design and construction of microbial cell factories based on systems biology. Synth Syst Biotechnol 2023; 8:176-185. [PMID: 36874510 PMCID: PMC9979088 DOI: 10.1016/j.synbio.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Environmental sustainability is an increasingly important issue in industry. As an environmentally friendly and sustainable way, constructing microbial cell factories to produce all kinds of valuable products has attracted more and more attention. In the process of constructing microbial cell factories, systems biology plays a crucial role. This review summarizes the recent applications of systems biology in the design and construction of microbial cell factories from four perspectives, including functional genes/enzymes discovery, bottleneck pathways identification, strains tolerance improvement and design and construction of synthetic microbial consortia. Systems biology tools can be employed to identify functional genes/enzymes involved in the biosynthetic pathways of products. These discovered genes are introduced into appropriate chassis strains to build engineering microorganisms capable of producing products. Subsequently, systems biology tools are used to identify bottleneck pathways, improve strains tolerance and guide design and construction of synthetic microbial consortia, resulting in increasing the yield of engineered strains and constructing microbial cell factories successfully.
Collapse
Affiliation(s)
- Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Chegukrishnamurthi M, Shekh A, Ravi S, Narayana Mudliar S. Volatile organic compounds involved in the communication of microalgae-bacterial association extracted through Headspace-Solid phase microextraction and confirmed using gas chromatography-mass spectrophotometry. BIORESOURCE TECHNOLOGY 2022; 348:126775. [PMID: 35104650 DOI: 10.1016/j.biortech.2022.126775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
In the present study, bacterial mixture (Rhizobium and Agrobacterium) and axenic Chlorella were cultivated individually, in a mixed (co-cultured) form, and through headspace connections to study volatile organic compounds (VOCs) profile and their effect on growth. Results indicated that VOCs produced by the axenic microalgae and microalgae co-cultured with bacteria were significantly different. Axenic Chlorella predominantly produced a flavouring organic compound 2-pentadecanone (69.54%), bacterial mixed culture produced 1-decanone, 1,2,3-butanetriol, and quinoline (15-20%), and direct co-culturing of Chlorella with bacteria predominantly produced 2-pentadecanone (32.4 %). When they were allowed to communicate distantly through headspace connection, highly diversified VOCs in large numbers but low quantities were noted, predominantly 1,2-propanediol (28.82 %). In addition, growth of the co-cultured Chlorella was 1.5 times higher, while Chlorella in headspace connection with bacterial mixture exhibited ∼ 3.2 times increase in growth compared to the axenic Chlorella, indicating the essential role of VOCs in growth and communication.
Collapse
Affiliation(s)
- Madhubalaji Chegukrishnamurthi
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarada Ravi
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Narayana Mudliar
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Reshmy R, Athiyaman Balakumaran P, Divakar K, Philip E, Madhavan A, Pugazhendhi A, Sirohi R, Binod P, Kumar Awasthi M, Sindhu R. Microbial valorization of lignin: Prospects and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126240. [PMID: 34737164 DOI: 10.1016/j.biortech.2021.126240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Lignin is the world's second most prevalent biomaterial, but its effective value-added product valorization methods are still being developed. The most common preparation processes for converting lignin to platform chemicals and biofuels are fragmentation and depolymerization. Due to its structural diversity, fragmentation generally produces a variety of products, necessitating tedious separation and purifying methods to isolate the desired products. Bacterial-based techniques are commonly utilized for lignin fragmentation due to their high metabolitic activity. Recent advancements in lignin valorization utilizing bacteria, such as lignin decomposing microbes and major pathways involved that can breakdown lignin into various valuable products namely lipids, furfural, vanillin, polyhydroxybutyrate, poly lactic acid blends were discussed in this review. This review also covers the genetic and fermentation methodologies to enhance lignin decomposition, challenges and future trends of microbe based lignin valorization.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - K Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur 602 117, Tamil Nadu, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
8
|
Khanra A, Vasistha S, Kumar S, Rai MP. Cultivation of microalgae on unhydrolysed waste molasses syrup using mass cultivation strategy for improved biodiesel. 3 Biotech 2021; 11:287. [PMID: 34109090 DOI: 10.1007/s13205-021-02823-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
High cultivation cost and low lipid yield are framed as a major bottleneck for the production of microalgae biodiesel. Hence, we first and foremost highlight a trophic mode transition, coupled with a combinatorial effect of organic carbon, nitrogen and light (C/N/L) on an isolated microalga Chlorococcum sp. SVF in a one pot tri-phasic intermittent feeding system by developing a lab scale Raceway tank (40L). Hitherto, waste molasses syrup without hydrolysis is unexplored in algal bioenergy arena. The direct utilisation capability of sucrose, served by waste unhydrolysed molasses syrup (WUMS), effectively modulates the intrinsic biochemical and physiological characteristics towards microalgae biomass and lipid assimilation. Response surface methodology-central composite design (RSM-CCD) tool has been employed to observe the cumulative impact of light irradiation and nutrient sources (carbon and nitrogen) on cellular stoichiometric analysis. Experimental results exhibit a potentially achievable biomass (18.88 g L-1) and lipid accumulation (80.34%) under the light intensity of 75.5 µmol m-2 s-1 with stepwise light attenuation strategy. Characterisation of fatty acid methyl esters (FAME) reveals the dominance of oleic acid (32.72%) and palmitic acid methyl esters (32.49%) in mixotrophic condition, which are considered as the upmost indicators of quality biodiesel. The biofuel properties were obtained in acquiescence with American and European standard. These findings are therefore a way forward towards the effective growth of Chlorococcum sp. SVF in sucrose rich inexpensive industrial waste stream that positively influences the lipid yield for large scale sustainable biodiesel production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02823-7.
Collapse
|