1
|
Yi Y, Hu S, Ma Y, Tang T, Liu C, Yan Y, Lei L, Hou Y. The structure impact of lignin in pulping material on the energy storage performance of black liquor derived carbon cathodes for zinc ion hybrid capacitors. J Colloid Interface Sci 2025; 683:55-67. [PMID: 39671900 DOI: 10.1016/j.jcis.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cooking black liquors generated during the pulping process have been recognized as promising electrode materials which can be directly applied as carbon sources. This paper investigates the relationship between the microstructure of lignin and the electrochemical properties of carbon derived from black liquor obtained from various plants, including softwood, hardwood, and grass. It was found that eucalyptus black liquor, abundant in methoxy groups, has a notable impact on the performance of carbon materials compared to black liquor derived from Pinus sylvestris and bamboo. The abundant methoxy groups contribute to micropore formation and facilitate the incorporation of oxygen atoms from the lignin side chains into the carbon matrix. This process results in a porous carbon structure with a substantial specific surface area (1599 m2/g) and an oxygen content of 5.4 %, which facilitate charge transfer and reduce the adsorption energy barrier (from -0.17 eV to -0.36 eV). The specific capacitance of the prepared single electrode reaches 271 F g-1. Additionally, a zinc ion hybrid capacitor utilizing a carbon cathode produced from eucalyptus black liquor achieves a maximum energy density of 71.8 Wh kg-1 and a power density of 1.11 kW kg-1. This work offers recommendations for selecting raw materials to optimize the industrial production of electrode materials for high energy storage devices.
Collapse
Affiliation(s)
- Yanjie Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songqing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuyang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Technical Center, Henan Cigarette Industry Tobacco Sheet Co., Ltd., Xuchang, Henan Province 461100 China
| | - Lirong Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Pan Y, Chen W, Kang Q, Hao L, Lu J, Zhu J. Enhanced physicochemical characteristics and biological activities of low-temperature ethylenediamine/urea pretreated lignin. Bioprocess Biosyst Eng 2025; 48:367-379. [PMID: 39614883 DOI: 10.1007/s00449-024-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/22/2024] [Indexed: 02/27/2025]
Abstract
Low-temperature ethylenediamine (EDA)/urea pretreatment had been demonstrated to be an efficient pretreatment method for enzymatic hydrolysis and bioethanol production. For high-value utilization of the third main components of lignocellulosic biomass, the physicochemical structure characteristics and biological activities of low-temperature EDA/urea pretreated lignin (EUL) were comprehensively investigated in the present study. The results demonstrated that the pretreatment process facilitated the depolymerization of lignin, resulting in notable reduction in molecular weight and polydispersity index from 2.32 to 1.42 kg/mol and 1.44 to 1.20, respectively. The EDA/urea pretreated lignin (EUL) exhibited enhanced ultraviolet absorption capacity and the most significant DPPH radical scavenging and inhibition of Staphylococcus aureus in comparison to the primary lignin (PL) and the NaOH pretreated lignin (NL). Enhanced physicochemical characteristics and biological activities of EUL make it more suitable to be developed as sunscreen ingredient or antioxidant and antimicrobial agent in food preservation and conservation.
Collapse
Affiliation(s)
- Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Weiwei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| |
Collapse
|
3
|
Fan Y, Ji H, Ji X, Tian Z, Chen J. Lignocellulosic biomass pretreatment with a lignin stabilization strategy and valorization toward multipurpose fractionation. Int J Biol Macromol 2024; 259:129186. [PMID: 38184047 DOI: 10.1016/j.ijbiomac.2023.129186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Lignocellulosic biomass has emerged as a promising alternative with sustainable advantages for the production of a wide range of renewable products and value-added chemicals. In this study, a pretreatment strategy that use a fully recyclable acid hydrotrope (p-TsOH aqueous solution) to extract lignin and employ glyoxylic acid (GA) to stabilize lignin was proposed for biomass valorization toward multipurpose fractionation. 83.0 % of lignin was dissolved out by p-TsOH hydrotrope (80 wt%) with GA addition to form GA-stabilized product at 80 o C for 15 min. The stabilized lignin was subsequently used as an additive in the preparation of lignin-based suncream. Notably, the incorporation of 4 wt% lignin nanospheres into an SPF15 sunscreen yielded a measured SPF of 59.94. Furthermore, the depolymerization of uncondensed lignin into aromatic monomers yielded a high lignin-oil yield of 84.2 %. Additionally, direct heating of the pretreatment liquor facilitated the conversion of monosaccharides into furfural, achieving a desired yield of 53.7 % without the addition of any acid catalyst. The pretreatment also enhanced the enzymatic hydrolysis of glucan, resulting in a saccharification yield of 98.4 %. Moreover, short-term ultrasonication of the pretreated substrate yielded pulp suitable for papermaking. Incorporating 15 wt% fibers into the produced paper sheets led to a 5.3 % increase in tear index and a 25.4 % increase in tensile index. This study presents a viable pretreatment strategy for the multipurpose fractionation of lignocellulosic biomass, offering potential avenues for biomass valorization.
Collapse
Affiliation(s)
- Yufei Fan
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hairui Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhongjian Tian
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiachuan Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Tan J, Huang J, Yuan J, Chen J, Pei Z, Li H, Yang S. Novel supramolecular deep eutectic solvent-enabled in-situ lignin protection for full valorization of all components of wheat straw. BIORESOURCE TECHNOLOGY 2023; 388:129722. [PMID: 37704088 DOI: 10.1016/j.biortech.2023.129722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Lignin is usually deemed as an inhibitor to enzymatic hydrolysis of cellulose due to its physical barrier, non-productive adsorption, and steric hindrance. Herein, a novel supramolecular deep eutectic solvent (SUPRADES), comprising ethylene glycol and citric acid in 5:1 M ratio, and β-cyclodextrin (β-CD) in a concentration of 3.5% (w/w), was developed to be efficient for pretreating wheat straw. The delignification rate, cellulose enzymatic digestibility, and hemicellulose removal reached 90.45%, 97.36% and 87.24%, respectively, which may be attributed to the introduction of β-CD with superior ability of both adsorption and in-situ lignin protection to efficiently remove lignin with intact structure from cellulose surface. The mechanisms of high-efficiency lignin extraction/protection were systematically illustrated by adsorption kinetics. Moreover, Trichosporon cutaneum grown on the hemicellulose and cellulose fractions after pretreatment afforded 8.8 g total lipids from 100 g wheat straw. The green SUPARDES pretreatment strategy offers a new avenue for upgrading lignocellulose to biofuels.
Collapse
Affiliation(s)
- Jinyu Tan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China; Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jinshu Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Junfa Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiasheng Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhengfei Pei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
5
|
Xu X, Zhang W, You C, Fan C, Ji W, Park JT, Kwak J, Chen H, Zhang YHPJ, Ma Y. Biosynthesis of artificial starch and microbial protein from agricultural residue. Sci Bull (Beijing) 2023; 68:214-223. [PMID: 36641289 DOI: 10.1016/j.scib.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Growing populations and climate change pose great challenges to food security. Humankind is confronting a serious question: how will we feed the world in the near future? This study presents an out-of-the-box solution involving the highly efficient biosynthesis of artificial starch and microbial proteins from available and abundant agricultural residue as new feed and food sources. A one-pot biotransformation using an in vitro coenzyme-free synthetic enzymatic pathway and baker's yeast can simultaneously convert dilute sulfuric acid-pretreated corn stover to artificial starch and microbial protein under aerobic conditions. The β-glucosidase-free commercial cellulase mixture plus an ex vivo two-enzyme complex containing cellobiose phosphorylase and potato α-glucan phosphorylase displayed on the surface of Saccharomyces cerevisiae, showed better cellulose hydrolysis rates than a commercial β-glucosidase-rich cellulase mixture. This is because the channeling of the hydrolytic product from the solid cellulosic feedstock to the yeast mitigated the inhibition of the cellulase cocktail. Animal tests have shown that the digestion of artificial amylose results in slow and relatively small changes in blood sugar levels, suggesting that it could be a new health food component that prevents obesity and diabetes. A combination of the utilization of available agricultural residue and the biosynthesis of starch and microbial protein from non-food biomass could address the looming food crisis in the food-energy-water nexus.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chun You
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Kwak
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
6
|
Structural characterization of by-product lignins from organosolv rapeseed straw pulping and their application as biosorbents. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Chen J, Wang D, Lu X, Guo H, Xiu P, Qin Y, Xu C, Gu X. Effect of Cobalt(II) on Acid-Modified Attapulgite-Supported Catalysts on the Depolymerization of Alkali Lignin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiajia Chen
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Dandan Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xinyu Lu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Haoquan Guo
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Pengcheng Xiu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Yu Qin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Chaozhong Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xiaoli Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| |
Collapse
|