1
|
Cao C, Huo T, Liu P, Long J, Ma Y, Jahan SI, Manjoro TT, Dong F. Montmorillonite‑sodium alginate/chitosan beads: A green potential solution for phosphorus removal from wastewater and slow-release phosphorus fertilizer application. Int J Biol Macromol 2025; 305:141276. [PMID: 39984089 DOI: 10.1016/j.ijbiomac.2025.141276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Effective recovery of phosphorus from wastewater and its subsequent reutilization are crucial for controlling water eutrophication and promoting resourceful utilization of pollutants. In this study, an eco-friendly and highly efficient montmorillonite‑sodium alginate/chitosan beads (CS/SA-FeMT) was synthesized via the semi-interpenetrating network method for phosphorus adsorption, and its potential application as a fertilizer after phosphorus adsorption was also preliminarily investigated. The results revealed that the surface of CS/SA-FeMT was coated with granular montmorillonite, exhibiting a rougher layered stacking structure. Consequently, the phosphorus adsorption capacity of CS/SA-FeMT was significantly enhanced compared to montmorillonite or sodium alginate/chitosan beads alone, reaching a maximum adsorption capacity of 88.3 mg P/g. Furthermore, the adsorption interference experiment indicated that the CS/SA-FeMT composite demonstrated exceptional resistance to interference from common ions (Cl-, SO42- and NO3-) and organic acids (humic acid and fulvic acid) typically found in wastewater. Additionally, the CS/SA-FeMT exhibited low leaching of Fe and Ca, and maintained 81.65 % phosphorus adsorption efficiency after five adsorption/desorption cycles. The adsorption mechanism of CS/SA-FeMT was primarily attributed to electrostatic attraction, surface precipitation, ligand exchange, and ion exchange. In addition, the phosphorus release characteristics showcased the CS/SA-FeMT hydrogel beads' exceptional slow-release capabilities, with complete phosphorus release (>99 %) achieved within 19, 19, and 20 days in deionized water at pH levels of 5, 7, and 9, respectively. Overall, CS/SA-FeMT demonstrated excellent potential for removal phosphorus from water and further use as a phosphorus fertilizer.
Collapse
Affiliation(s)
- Chao Cao
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Technology Research and development Department, Runhao Environmental Technology Co., LTD, Mianyang 621010, Sichuan, China
| | - Tingting Huo
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Peixin Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jiangyue Long
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Yuancong Ma
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Sumaiya Iffat Jahan
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Tendai Terence Manjoro
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, Sichuan, China; School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
2
|
Wang YF, Wang ZB, Zhang YH, Huang YG, Ye X, Wang W. Boosting the phosphate adsorption of calcite by low Mg 2+-Doping. ENVIRONMENTAL RESEARCH 2025; 267:120692. [PMID: 39725139 DOI: 10.1016/j.envres.2024.120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Calcite is a promising material choice for adsorbing phosphates because of its abundance and environmentally benign nature. However, the slow adsorption kinetics and hence low adsorption capacity within a short time frame hinders its practical application. In this work, we solve these problems by presenting a low Mg2+-doped calcite adsorbent, Mg-10. With a 3.75 wt% of Mg2+ doping, Mg-10 exhibits a remarkable adsorption capacity of 157.7 mg P/g. It also demonstrates a substantial boost in the adsorption kinetics, achieving a sixfold increase in adsorption capacity within 24 h compared to the undoped calcite. Meanwhile, Mg-10 not only offers improved adsorption selectivity but also maintains a stable effluent pH, underscoring its environmental compatibility. By conducting soil column experiments, we find that Mg-10 quickly captures the excess phosphates during the mimicking fertilization process, and slowly releases the nutrient afterwards, which can increase the feralization efficiency. These results provide alternative strategies for managing phosphate pollution originated from fertilization, and underscores the potential of Mg-10 in sustainable agriculture and environmental remediation.
Collapse
Affiliation(s)
- Yi-Fan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zuo-Bei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Yong-Hui Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - You-Gui Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021,. China.
| | - Wei Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
3
|
Xu MJ, Cui YW. Simultaneous aerobic nitrogen and phosphorus removal by novel halotolerant fungus Mucor circinelloides SNDM1: Function and metabolism pathway. BIORESOURCE TECHNOLOGY 2024; 410:131257. [PMID: 39128639 DOI: 10.1016/j.biortech.2024.131257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Fungi capable of simultaneous nitrogen and phosphorus removal from wastewater is rarely found. Here, a novel fungal strain (SNDM1) performing heterotrophic nitrification, aerobic denitrification, and phosphate removal was isolated and identified as Mucor circinelloides. The favorable nutrient removal conditions by the strain using glucose were C/N ratios of 25-30, salinities of 0 %-3 %, and pH of 7.5. Strain SNDM1 achieved ammonium, nitrite, nitrate, and phosphate removal rates of 5.23, 10.08, 4.88, and 0.97 mg/L/h. Nitrogen balance indicated that gaseous (18.60 %-24.55 %) and intracellular nitrogen (43.76 %-70.63 %) were primary fate of initial nitrogen. Enzyme activity revealed that ammonium removal occurred through heterotrophic nitrification and aerobic denitrification. Removed phosphorus was mainly transformed into cell membranes (56 %-64 %) and extracellular polymeric substances (20 %-26 %). Orthophosphate was the major intracellular phosphorus species, while polyphosphate and pyrophosphate existed extracellularly. These findings highlight the potential of this fungal strain for bioremediating polluted wastewater.
Collapse
Affiliation(s)
- Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Chen Z, Hu Y, Qiu G, Liang D, Cheng J, Chen Y, Zhu X, Wang G, Xie J. Unraveling the effects and mechanisms of antibiotics on aerobic simultaneous nitrogen and phosphorus removal by Acinetobacter indicus CZH-5. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134831. [PMID: 38850942 DOI: 10.1016/j.jhazmat.2024.134831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The effects of antibiotics, such as tetracycline, sulfamethoxazole, and ciprofloxacin, on functional microorganisms are of significant concern in wastewater treatment. This study observed that Acinetobacter indicus CZH-5 has a limited capacity to remove nitrogen and phosphorus using antibiotics (5 mg/L) as the sole carbon source. When sodium acetate was supplied (carbon/nitrogen ratio = 7), the average removal efficiencies of ammonia-N, total nitrogen, and orthophosphate-P increased to 52.46 %, 51.95 %, and 92.43 %, respectively. The average removal efficiencies of antibiotics were 84.85 % for tetracycline, 39.32 % for sulfamethoxazole, 18.85 % for ciprofloxacin, and 23.24 % for their mixtures. Increasing the carbon/nitrogen ratio to 20 further improved the average removal efficiencies to 72.61 % for total nitrogen and 97.62 % for orthophosphate-P (5 mg/L antibiotics). Additionally, the growth rate and pollutant removal by CZH-5 were unaffected by the presence of 0.1-1 mg/L antibiotics. Transcriptomic analysis revealed that the promoted translation of aceE, aarA, and gltA genes provided ATP and proton -motive forces. The nitrogen metabolism and polyphosphate genes were also affected. The expression of acetate kinase, dehydrogenase, flavin mononucleotide enzymes, and cytochrome P450 contributed to antibiotic degradation. Intermediate metabolites were investigated to determine the reaction pathways.
Collapse
Affiliation(s)
- Zuhao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
5
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
6
|
Gostinčar C, Gunde-Cimerman N. Black yeasts in hypersaline conditions. Appl Microbiol Biotechnol 2024; 108:252. [PMID: 38441672 PMCID: PMC10914880 DOI: 10.1007/s00253-024-13052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.
Collapse
Affiliation(s)
- Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
He D, Zhang Z, Zhang W, Zhang H, Liu J. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. Int J Biol Macromol 2024; 261:129732. [PMID: 38280708 DOI: 10.1016/j.ijbiomac.2024.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A novel Fe/La decorative biochar filled in sodium alginate beads (SA-KBC-Fe/La) was prepared by a simple sol-gel method and applied to adsorb phosphate (P) efficiently from water in this study. The morphology, structure and chemical component of the hydrogel beads were characterized in detail. And the synthesized bead exhibited easy separation and high P uptake of 46.65 mg/g when the Fe: La was of 1: 2 at 298 K with initial P of 100 mg/L, which was much higher than SA gel bead. The adsorption showed that the optimal pH was 6, and the adsorption was met with pseudo-second-order kinetics and Langmuir isothermal models, indicating a chemical adsorption process. The adsorption capacity remained 82 % after 5 cycles of adsorption. The adsorption mechanism of P was mainly of ligand exchange and electrostatic attraction. Compared with other reported adsorbents, the modification of Fe/La could enhance the mechanical property of SA-KBC-Fe/La beads with increasing active sites. Additionally, the involved biochar could lead to excellent thermal stability and hierarchical porous structure of beads with larger specific surface area (54.22 m2/g). The study could provide new ideas for P removal and strategy for the final disposal of municipal sludge.
Collapse
Affiliation(s)
- Dandan He
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Zeyu Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Hong Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Juanli Liu
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
8
|
Xu MJ, Cui YW, Huang MQ, Sui Y. Simultaneous inorganic nitrogen and phosphate removal by aerobic-heterotrophic fungus Fusarium keratoplasticum FSP1: Performance, pathway and application. BIORESOURCE TECHNOLOGY 2024; 393:130141. [PMID: 38040316 DOI: 10.1016/j.biortech.2023.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Fungi with multiple contaminant removal function have rarely been studied. Here, a novel fungal strain Fusarium keratoplasticum FSP1, which was isolated from halophilic granular sludge, is reported for first time to perform simultaneous nitrogen and phosphate removal. The strain showed wide adaptability under C/N ratios of 30-35, salinities of 0 %-3 % (m/v), and pH of 7.5-9.5. The maximum removal rates of ammonium, nitrate and nitrite were 4.43, 4.01 and 2.97 mg N/L/h. The nitrogen balance, enzyme activity and substrate conversion experiments demonstrated a single strain FSP1 can assimilate inorganic nitrogen and convert inorganic nitrogen to gaseous nitrogen through heterotrophic nitrification or aerobic denitrification. About 39 %-42 % of the degraded phosphorus was in the extracellular polymeric substances (EPS). Orthophosphate was the main phosphorus species in the cell, whereas phosphate monoester and diester were in the EPS. The novel strain FSP1 is a potential candidate for wastewater treatment.
Collapse
Affiliation(s)
- Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Mei-Qi Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuan Sui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Wang L, Chen C, Tang Y, Liu B. A novel hypothermic strain, Pseudomonas reactans WL20-3 with high nitrate removal from actual sewage, and its synergistic resistance mechanism for efficient nitrate removal at 4 °C. BIORESOURCE TECHNOLOGY 2023; 385:129389. [PMID: 37369315 DOI: 10.1016/j.biortech.2023.129389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Nitrate can be well removed by bacteria at 25-30 °C. However, nitrate removal almost ceases at temperatures lower than 5 °C. In this study, a novel hypothermic strain, Pseudomonas reactans WL20-3 exhibited an excellent aerobic nitrate removal ability at 4 °C. It had high capability for the removal of nitrate, total dissolved nitrogen (TDN), and dissolved organic carbon (DOC) at 4 °C, achieving removal efficiencies of 100%, 87.91%, and 97.48%, respectively. The transcriptome analysis revealed all genes involved in the nitrate removal pathway were significantly up-regulated. Additionally, the up-regulation of ABC transporter genes and down-regulation of respiratory chain genes cooperated with the nitrate metabolism pathway to resist low-temperature stress. In actual sewage, inoculated with WL20-3, the nitrate removal efficiency was found to be 70.70%. Overall, these findings demonstrated the impressive capacity of the novel strain WL20-3 to remove nitrate and provided novel insights into the synergistic resistance mechanism of WL20-3 at low temperature.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, PR China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
10
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Sun C, Cao H, Huang C, Wang P, Yin J, Liu H, Tian H, Xu H, Zhu J, Liu Z. Eggshell based biochar for highly efficient adsorption and recovery of phosphorus from aqueous solution: Kinetics, mechanism and potential as phosphorus fertilizer. BIORESOURCE TECHNOLOGY 2022; 362:127851. [PMID: 36031128 DOI: 10.1016/j.biortech.2022.127851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Development of an efficient and green adsorbent is of great significance for phosphorus removal and recovery from eutrophic water. This work prepared an eggshell modified biochar (ESBC) by co-pyrolysis of eggshells and corn stalk. ESBC exhibited an excellent performance for phosphorus adsorption over a wide pH range (5-13), and achieved a maximum adsorption of 557.0 mg P/g. The adsorption process was well fitted by pseudo-second-order model (R2 > 0.962) and Sips model (R2 > 0.965), and it was endothermic (ΔH0 > 0) and spontaneous (ΔG0 < 0) according to thermodynamic analysis. The column experiment confirmed the feasibility of ESBC as a filter media for phosphorus removal in flow condition, and obtained a P removal of 460.0 mg/g. Soil burial tests indicated P-laden ESBC has a good P slow-release performance (maintained for up to 25 days). Overall, ESBC has a promising application potential as an efficient adsorbent for phosphorus recovery and subsequently as a slow-release fertilizer.
Collapse
Affiliation(s)
- Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Heng Cao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
12
|
Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Xu Y, Kerr PG, Dolfing J, Rittmann BE, Wu Y. A novel biotechnology based on periphytic biofilms with N-acyl-homoserine-lactones stimulation and lanthanum loading for phosphorus recovery. BIORESOURCE TECHNOLOGY 2022; 347:126421. [PMID: 34838961 DOI: 10.1016/j.biortech.2021.126421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
This study presents an approach for developing periphytic biofilm with N-acyl-homoserine-lactones (AHLs) stimulation and lanthanum (La, a rare earth element) loading, to achieve highly efficient and stable phosphorus (P) recovery from wastewater. AHLs stimulated biofilm growth and formation, also improved stable P entrapment by enhancing extracellular polymeric substance (EPS) production and optimizing P-entrapment bacterial communities. Periphytic biofilms loading La is based on ligand exchanges, and La loading achieved initial rapid P entrapment by surface adsorption. The combination of AHLs stimulation and La loading achieved 99.0% P entrapment. Interestingly, the enhanced EPS production stimulated by AHLs protected biofilms against La. Moreover, a method for P and La separately recovery from biofilms was developed, achieving 89-96% of P and 88-93% of La recovery. This study offers a promising biotechnology to reuse La from La-rich wastewater and recover P by biofilm doped with La, which results in a win-win situation for resource sustainability.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle Upon Tyne NE1 8QH, UK
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P. O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Hubei Yichang 443002, China.
| |
Collapse
|