1
|
Chen Q, Wang J, Zhang S, Chen X, Hao J, Wu Q, Zhu D. Discovery and directed evolution of C-C bond formation enzymes for the biosynthesis of β-hydroxy-α-amino acids and derivatives. Crit Rev Biotechnol 2024; 44:1495-1514. [PMID: 38566472 DOI: 10.1080/07388551.2024.2332295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
β-Hydroxy-α-amino acids (β-HAAs) have extensive applications in the pharmaceutical, chemical synthesis, and food industries. The development of synthetic methodologies aimed at producing optically pure β-HAAs has been driven by practical applications. Among the various synthetic methods, biocatalytic asymmetric synthesis is considered a sustainable approach due to its capacity to generate two stereogenic centers from simple prochiral precursors in a single step. Therefore, extensive efforts have been made in recent years to search for effective enzymes which enable such biotransformation. This review provides an overview on the discovery and engineering of C-C bond formation enzymes for the biocatalytic synthesis of β-HAAs. We highlight examples where the use of threonine aldolases, threonine transaldolases, serine hydroxymethyltransferases, α-methylserine aldolases, α-methylserine hydroxymethyltransferases, and engineered alanine racemases facilitated the synthesis of β-HAAs. Additionally, we discuss the potential future advancements and persistent obstacles in the enzymatic synthesis of β-HAAs.
Collapse
Affiliation(s)
- Qijia Chen
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Jingmin Wang
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Sisi Zhang
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Xi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianxiong Hao
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Qiaqing Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dunming Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Teng Z, Pan X, Liu Y, You J, Zhang H, Zhao Z, Qiao Z, Rao Z. Engineering serine hydroxymethyltransferases for efficient synthesis of L-serine in Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 393:130153. [PMID: 38052329 DOI: 10.1016/j.biortech.2023.130153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
L-serine is a high-value amino acid widely used in the food, medicine, and cosmetic industries. However, the low yield of L-serine has limited its industrial production. In this study, a cellular factory for efficient synthesis of L-serine was obtained by engineering the serine hydroxymethyltransferases (SHMT). Firstly, after screening the SHMT from Alcanivorax dieselolei by genome mining, a mutant AdSHMTE266M with high thermal stability was identified through rational design. Subsequently, an iterative saturating mutant library was constructed by using coevolutionary analysis, and a mutant AdSHMTE160L/E193Q with enzyme activity 1.35 times higher than AdSHMT was identified. Additionally, the target protein AdSHMTE160L/E193Q/E266M was efficiently overexpressed by improving its mRNA stability. Finally, combining the substrate addition strategy and system optimization, the optimized strain BL21/pET28a-AdSHMTE160L/E193Q/E266M-5'UTR-REP3S16 produced 106.06 g/L L-serine, which is the highest production to date. This study provides new ideas and insights for the engineering design of SHMT and the industrial production of L-serine.
Collapse
Affiliation(s)
- Zixin Teng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Yunran Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhina Qiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
4
|
Jeong YJ, Seo MJ, Sung BH, Kim JS, Yeom SJ. Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans. BIORESOUR BIOPROCESS 2024; 11:9. [PMID: 38647973 PMCID: PMC10992282 DOI: 10.1186/s40643-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 04/25/2024] Open
Abstract
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.
Collapse
Affiliation(s)
- Yeon-Ju Jeong
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Soo-Jin Yeom
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, Republic of Korea.
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Li YX, Hua XH, Yan QJ, Jin Y, Jiang ZQ. One-Pot Three-Enzyme System for Production of a Novel Prebiotic Mannosyl-β-(1 → 4)-Fructose Using a d-Mannose Isomerase from Xanthomonas phaseoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12117-12127. [PMID: 36121717 DOI: 10.1021/acs.jafc.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present supply of prebiotics is entirely inadequate to meet their demand. To produce novel prebiotics, a d-mannose isomerase (XpMIaseA) from Xanthomonas phaseoli was first produced in Komagataella phaffii (Pichia pastoris). XpMIaseA shared the highest amino acid sequence identity (58.0%) with the enzyme from Marinomonas mediterranea. Efficient secretory production of XpMIaseA (282.0 U mL-1) was achieved using high cell density fermentation. The optimal conditions of XpMIaseA were pH 7.5 and 55 °C. It showed a broad substrate specificity, which isomerized d-mannose, d-talose, mannobiose, epilactose, and mannotriose. XpMIaseA was employed to construct a one-pot three-enzyme system for the production of mannosyl-β-(1 → 4)-fructose (MF) using mannan (5%, w/v) as the substrate. The equilibrium yield of MF was 58.2%. In in vitro fermentations, MF significantly stimulated (≤3.2-fold) the growth of 12 among 15 tested Bifidobacterium and Lactobacillus strains compared with fructo-oligosaccharides. Thus, the novel d-mannose isomerase provides a one-pot bioconversion strategy for efficiently producing novel prebiotics.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Xiao-Han Hua
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Jin
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| |
Collapse
|
6
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Ji L, Tang Z, Yang D, Ma C, He YC. Improved one-pot synthesis of furfural from corn stalk with heterogeneous catalysis using corn stalk as biobased carrier in deep eutectic solvent-water system. BIORESOURCE TECHNOLOGY 2021; 340:125691. [PMID: 34358983 DOI: 10.1016/j.biortech.2021.125691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Using acid-treated corn stalk (CS) as biobased carrier, heterogeous SO42-/SnO2-CS catalyst was firstly prepared to catalyze CS into fufural in deep eutectic solvent-water system. The physical properties of SO42-/SnO2-CS were captured by FT-IR, NH3-TPD, XRD, XPS, and BET. SO42-/SnO2-CS (1.2 wt%) could be used to catalyze CS (75.0 g/L) with MgCl2 (15.0 g/L) to produce furfural (102.3 mM) in the yield of 68.2% for 0.5 h at 170 °C in ChCl:EG-water (20:80, v:v). Moreover, enhanced synthesis of furfural was explored based on the structure changes of CS, furfural yields and formation of byproducts. Finally, the potential catalytic mechanism for catalyzing CS into furfural and byproducts was proposed using SO42-/SnO2-CS as catalyst in ChCl:EG-water containing MgCl2. In summary, this established ChCl:EG-water system and optimized catalytic condition facillitated to synthesize furfural from biomass with biobased solid acid catalyst.
Collapse
Affiliation(s)
- Li Ji
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Zhengyu Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Dong Yang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, PR China.
| |
Collapse
|
8
|
Lee SH, Yeom SJ, Kim SE, Oh DK. Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends Biotechnol 2021; 40:306-319. [PMID: 34462144 DOI: 10.1016/j.tibtech.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Aldol chemicals are synthesized by condensation reactions between the carbon units of ketones and aldehydes using aldolases. The efficient synthesis of diverse organic chemicals requires intrinsic modification of aldolases via engineering and design, as well as extrinsic modification through immobilization or combination with other catalysts. This review describes the development of aldolases, including their engineering and design, and the selection of desired aldolases using high-throughput screening, to enhance their catalytic properties and perform novel reactions. Aldolase-containing catalysts, which catalyze the aldol reaction combined with other enzymatic and/or chemical reactions, can efficiently synthesize diverse complex organic chemicals using inexpensive and simple materials as substrates. We also discuss the current challenges and emerging solutions for aldolase-based catalysts.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|