1
|
Khan N, Tabasi ZA, Liu J, Zhao Y, Zhang B. Integrated sand and activated carbon-based filtration for decanted oily wastewater treatment during offshore oil spill response. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106905. [PMID: 39673891 DOI: 10.1016/j.marenvres.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Decanted oily wastewater is the generated stream associated with vessel-based skimming operations during offshore oil spill response. It contains a large amount of persistent, bio-accumulative, carcinogenic, and mutagenic oil contaminants, so it is critical to find effective ways to treat it. This study targets the decanted oily wastewater treatment by developing an integrated sand and activated carbon-based filtration approach. Three activated carbons (AC-1, AC-2, AC-3) were evaluated for oil removal from the oil-water mixture. AC-1 demonstrated superior performance with the highest BET surface area (704 m2/g) and pore volume (0.231 cm³/g). Batch adsorption experiments with AC-1 examined the effects of activated carbon textural characteristics, adsorbent dosage, and contact time on the total oil concentration and removal efficiency of polycyclic aromatic hydrocarbons (PAHs). Column experiments with AC-1 further explored various parameters, including the flow rate, column bed height, oil type, and adsorbent media on the adsorption performance. The findings demonstrate that 34 ml/min flow rate, 4 cm column height, and a combination of sand and activated carbon as adsorbent media achieved the highest total crude oil (Tera-Nova) and PAH removal efficiency (both 99.9%). By integrating the sand with activated carbon in the filtration system, both dissolved and emulsified petroleum hydrocarbons can be effectively removed. This research provides valuable insights into optimizing activated carbon-based systems in oil-water separation, with practical applications in marine oil spill response and wastewater treatment.
Collapse
Affiliation(s)
- Nadia Khan
- Environmental Science, Memorial University of Newfoundland, St. John's, NL, Canada, A1B3X5
| | - Zahra A Tabasi
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, NL, Canada, A1B3X5
| | - Jiabin Liu
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, NL, Canada, A1B3X5
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada, A1B3X5
| | - Baiyu Zhang
- Department of Civil Engineering, Memorial University of Newfoundland, St. John's, NL, Canada, A1B3X5.
| |
Collapse
|
2
|
Yao S, Ouyang S, Zhou Q, Tao Z, Chen Y, Zheng T. Environmental remediation and sustainable design of iron oxide nanoparticles for removal of petroleum-derived pollutants from water: A critical review. ENVIRONMENTAL RESEARCH 2024; 263:120009. [PMID: 39284490 DOI: 10.1016/j.envres.2024.120009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The global problem of major oil spills not only generates crude oil pollution, but produces many derivatives that pose ecological and human health challenges. While extensive research has focused on understanding the types of these contaminants, their transport modes, detection techniques, and ecotoxicological impacts, there are still significant research gaps in mechanisms for removal of petroleum-derived pollutants by iron oxide nanoparticles (IONPs). This work summarizes systematically the types and green synthesis of IONPs for the environmental remediation of various petroleum contaminants. We also provide comprehensive coverage of the excellent removal capacity and latest environmental remediation of IONPs-based materials (e.g., pristine, modified, or porous-supported IONPs materials) for the removal of petroleum-derived pollutants, potential interaction mechanisms (e.g., adsorption, photocatalytic oxidation, and synergistic biodegradation). A sustainable framework was highlighted in depth based on a careful assessment of the environmental impacts, associated hazards, and economic viability. Finally, the review provides an possible improvements of IONPs for petroleum-derived pollutants remediation and sustainable design on future prospect. In the current global environment of pollution reduction and carbon reduction, this information is very important for researchers to synthesize and screen suitable IONPs for the control and eradication of future petroleum-based pollutants with low environmental impact.
Collapse
Affiliation(s)
- Shuli Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
3
|
Zhang Y, Cao Y, Chen B, Dong G, Zhao Y, Zhang B. Marine biodegradation of plastic films by Alcanivorax under various ambient temperatures: Bacterial enrichment, morphology alteration, and release of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170527. [PMID: 38286285 DOI: 10.1016/j.scitotenv.2024.170527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The global ocean has been receiving massive amounts of plastic wastes. Marine biodegradation, influenced by global climate, naturally breaks down these wastes. In this study, we systematically compared the biodegradation performance of petroleum- and bio-based plastic films, i.e., low-density polyethylene (LDPE), polylactic acid (PLA), and polyhydroxyalkanoates (PHAs) under three ambient temperatures (4, 15, and 22 °C). We deployed the our previously isolated cold-tolerant plastic-degrading Alcanivorax to simulate the accelerated marine biodegradation process and evaluated the alteration of bacterial growth, plastic films, and released degradation products. Notably, we found that marine biodegradation of PHA films enriched more bacterial amounts, induced more conspicuous morphological damage, and released more microplastics (MPs) and dissolved organic carbon (DOC) under all temperatures compared to LDPE and PLA. Particularly, MPs were released from film edges and cracks with a mean size of 2.8 μm under all temperatures. In addition, the degradation products released by biodegradation of PHA under 22 °C induced the highest acute toxicity to Vibrio fischeri. Our results highlighted that: (1) marine biodegradation of plastics would release millions of MPs per cm2 exposed surface area even in cold environments within 60 days; (2) different marine biodegradation scenarios of these plastics may raise disparate impacts and mitigation-related studies.
Collapse
Affiliation(s)
- Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
4
|
Farooq U, Szczybelski A, Ferreira FC, Faria NT, Netzer R. A Novel Biosurfactant-Based Oil Spill Response Dispersant for Efficient Application under Temperate and Arctic Conditions. ACS OMEGA 2024; 9:9503-9515. [PMID: 38434809 PMCID: PMC10905727 DOI: 10.1021/acsomega.3c08429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Synthetic oil spill dispersants have become essential in offshore oil spill response strategies. However, their use raises significant concerns regarding toxicity to phyto- and zooplankton and other marine organisms, especially in isolated and vulnerable areas such as the Arctic and shorelines. Sustainable alternatives may be developed by replacing the major active components of commercial dispersants with their natural counterparts. During this study, interfacial properties of different types of glycolipid-based biosurfactants (rhamnolipids, mannosylerythritol lipids, and trehalose lipids) were explored in a crude oil-seawater system. The best-performing biosurfactant was further mixed with different nontoxic components of Corexit 9500A, and the interfacial properties of the most promising dispersant blend were further explored with various types of crude oils, weathered oil, bunker, and diesel fuel in natural seawater. Our findings indicate that the most efficient dispersant formulation was achieved when mannosylerythritol lipids (MELs) were mixed with Tween 80 (T). The MELs-T dispersant blend significantly reduced the interfacial tension (IFT) of various crude oils in seawater with results comparable to those obtained with Corexit 9500A. Importantly, no leaching or desorption of MELs-T components from the crude oil-water interface was observed. Furthermore, for weathered and more viscous asphaltenic bunker fuel oil, IFT results with the MELs-T dispersant blend surpassed those obtained with Corexit 9500A. This dispersant blend also demonstrated effectiveness at different dosages (dispersant-to-oil ratio (DOR)) and under various temperature conditions. The efficacy of the MELs-T dispersant was further confirmed by standard baffled flask tests (BFTs) and Mackay-Nadeau-Steelman (MNS) tests. Overall, our study provides promising data for the development of effective biobased dispersants, particularly in the context of petroleum exploitation in subsea resources and transportation in the Arctic.
Collapse
Affiliation(s)
- Umer Farooq
- Department
of Petroleum, SINTEF Industry, 7465 Trondheim, Norway
| | - Ariadna Szczybelski
- Norwegian
College of Fishery Science, The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Frederico Castelo Ferreira
- Institute
for Bioengineering and Biosciences and Department of Bioengineering,
Instituto Superior Técnico, Universidade
de Lisboa, 1049-001 Lisbon, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001 Lisbon, Portugal
| | - Nuno Torres Faria
- Institute
for Bioengineering and Biosciences and Department of Bioengineering,
Instituto Superior Técnico, Universidade
de Lisboa, 1049-001 Lisbon, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001 Lisbon, Portugal
| | - Roman Netzer
- Department
of Aquaculture, SINTEF Ocean, 7465 Trondheim, Norway
| |
Collapse
|
5
|
Giwa A, Chalermthai B, Shaikh B, Taher H. Green dispersants for oil spill response: A comprehensive review of recent advances. MARINE POLLUTION BULLETIN 2023; 193:115118. [PMID: 37300957 DOI: 10.1016/j.marpolbul.2023.115118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Green dispersants are so-called "green" because they are renewable (from bio-based sources), non-volatile (from ionic liquids), or are from naturally available solvents (vegetable oils). In this review, the effectiveness of different types of green dispersants, namely, protein isolates and hydrolysates from fish and marine wastes, biosurfactants from bacterial and fungal strains, vegetable-based oils such as soybean lecithin and castor oils, as well as green solvents like ionic liquids are reviewed. The challenges and opportunities offered by these green dispersants are also elucidated. The effectiveness of these dispersants varies widely and depends on oil type, dispersant hydrophilicity/hydrophobicity, and seawater conditions. However, their advantages lie in their relatively low toxicity and desirable physico-chemical properties, which make them potentially ecofriendly and effective dispersants for future oil spill response.
Collapse
Affiliation(s)
- Adewale Giwa
- Chemical and Water Desalination Engineering Program, Mechanical & Nuclear Engineering (MNE) Department, College of Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates.
| | - Bushra Chalermthai
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bismah Shaikh
- Sustainable Energy Development Research Group, Sustainable Energy and Power Systems Research Center, Research Institute for Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Li M, Yu J, Cao L, Yin Y, Su Z, Chen S, Li G, Ma T. Facultative anaerobic conversion of lignocellulose biomass to new bioemulsifier by thermophilic Geobacillus thermodenitrificans NG80-2. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130210. [PMID: 36308930 DOI: 10.1016/j.jhazmat.2022.130210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Heavy oil has hindered crude oil exploitation and pollution remediation due to its high density and viscosity. Bioemulsifiers efficiently facilitate the formation and stabilization of oil-in-water emulsions in low concentrations thus eliminating the above bottleneck. Despite their potential benefits, various obstacles had still impeded the practical applications of bioemulsifiers, including high purification costs and poor adaptability to extreme environments such as high temperature and oxygen deficiency. Herein, thermophilic facultative anaerobic Geobacillus thermodenitrificans NG80-2 was proved capable of emulsifying heavy oils and reducing their viscosity. An exocelluar bioemulsifier could be produced by NG80-2 using low-cost lignocellulose components as carbon sources even under anaerobic condition. The purified bioemulsifier was proved to be polysaccharide-protein complexes, and both components contributed to its emulsifying capability. In addition, it displayed excellent stress tolerance over wide ranges of temperatures, salinities, and pHs. Meanwhile, the bioemulsifier significantly improved oil recovery and degradation efficiency. An eps gene cluster for polysaccharide biosynthesis and genes for the covalently bonded proteins was further certificated. Therefore, the bioemulsifier produced by G. thermodenitrificans NG80-2 has immense potential for applications in bioremediation and EOR, and its biosynthesis pathway revealed here provides a theoretical basis for increasing bioemulsifier output.
Collapse
Affiliation(s)
- Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiaqi Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lu Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujun Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhaoying Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
7
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
8
|
Dong G, Chen B, Liu B, Cao Y, de Jourdan B, Stoyanov SR, Ling J, Ye X, Lee K, Zhang B. Comparison of O 3, UV/O 3, and UV/O 3/PS processes for marine oily wastewater treatment: Degradation performance, toxicity evaluation, and flocs analysis. WATER RESEARCH 2022; 226:119234. [PMID: 36270145 DOI: 10.1016/j.watres.2022.119234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Efficient on-site treatment technology is crucial for mitigating marine oily wastewater pollution. This work investigates the ozone (O3), ultraviolet (UV)/O3, UV/O3/persulfate (PS) processes for the treatment of marine oily wastewater, including degradation performance, acute toxicity evaluation, and oil flocs analysis in a benchtop circulating flow photoozonation reactor. Degradation performances have been studied by measuring the degradation rate of total oil concentrations, specific oil components (n-alkanes and polycyclic aromatic hydrocarbons (PAHs)), and total organic carbon (TOC). The results show that UV/O3/PS could significantly enhance the removal efficiency than the other two processes, with above 90% of removal efficiency in 30 min. Acute toxicity analysis further shows that the wastewater quality is significantly improved by four-fold of the EC50 of Vibrio fischeri, and the mortality of Artemia franciscana decreases from 100% to 0% after 48 h exposure. Further, the morphology and functional groups of flocs have been further characterized, showing that the floating flocs could be further degraded especially in UV/O3/PS process. Our study further raised discussions regarding the future on-site application of O3-based systems, based on the results generated from the treatment efficiency, toxicity, and flocs characterization. The regulation of the oxidation strength and optimization of the reaction systems could be a practical strategy for on-site marine oily wastewater treatment.
Collapse
Affiliation(s)
- Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, NB E5B 2L7, Canada
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Jingjing Ling
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
9
|
Liu B, Chen B, Ling J, Matchinski EJ, Dong G, Ye X, Wu F, Shen W, Liu L, Lee K, Isaacman L, Potter S, Hynes B, Zhang B. Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: Potential and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129340. [PMID: 35728323 DOI: 10.1016/j.jhazmat.2022.129340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanical oil recovery (i.e., booming and skimming) is the most common tool for oil spill response. The recovered fluid generated from skimming processes may contain a considerable proportion of water (10 % ~ 70 %). As a result of regulatory prohibition on the discharge of contaminated waters at sea, vessels and/or storage barges must make frequent trips to shore for oil-water waste disposal. This practice can be time- consuming thus reduces the overall efficiency and capacity of oil recovery. One potential solution is on-site oil-water separation and disposal of water fraction at sea. However, currently available decanting processes may have limited oil/water separation capabilities, especially in the presence of oil-water emulsion, which is inevitable in mechanical oil recovery. The decanted water may not meet the discharge standards and cause severe ecotoxicological impacts. This paper therefore comprehensively reviews the principles and progress in oil/water separation, demulsification, and on-site treatment technologies, investigates their applicability on decanting at sea, and discusses the ecotoxicity of decanted water in the marine environment. The outputs provide the fundamental and practical knowledge on decanting and help enhance response effectiveness and consequently reducing the environmental impacts of oil spills.
Collapse
Affiliation(s)
- Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Jingjing Ling
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Ethan James Matchinski
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Fei Wu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Wanhua Shen
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Lisa Isaacman
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Stephen Potter
- SL Ross Environmental Research Ltd., Ottawa, ON K2H 8S9, Canada
| | - Brianna Hynes
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
10
|
Zhu Z, Merlin F, Yang M, Lee K, Chen B, Liu B, Cao Y, Song X, Ye X, Li QK, Greer CW, Boufadel MC, Isaacman L, Zhang B. Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129260. [PMID: 35739779 DOI: 10.1016/j.jhazmat.2022.129260] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems. To facilitate marine oil spill response operations, especially addressing spill incidents in remote/Arctic offshore regions, an in-depth understanding of the transportation, fate and effects of naturally/chemically dispersed oil is of great importance. This review provides a synthesis of recent research results studies related to the application of dispersants at the surface and in the deep sea, the fate and transportation of naturally and chemically dispersed oil, and dispersant application in the Arctic and ice-covered waters. Future perspectives have been provided to identify the research gaps and help industries and spill response organizations develop science-based guidelines and protocols for the application of dispersants application.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | | | - Min Yang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Qingqi K Li
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Lisa Isaacman
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
11
|
|
12
|
Cao Y, Kang Q, Zhang B, Zhu Z, Dong G, Cai Q, Lee K, Chen B. Machine learning-aided causal inference for unraveling chemical dispersant and salinity effects on crude oil biodegradation. BIORESOURCE TECHNOLOGY 2022; 345:126468. [PMID: 34864175 DOI: 10.1016/j.biortech.2021.126468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Chemical dispersants have been widely applied to tackle oil spills, but their effects on oil biodegradation in global aquatic systems with different salinities are not well understood. Here, both experiments and advanced machine learning-aided causal inference analysis were applied to evaluate related processes. A halotolerant oil-degrading and biosurfactant-producing species was selected and characterized within the salinity of 0-70 g/L NaCl. Notably, dispersant addition can relieve the biodegradation barriers caused by high salinities. To navigate the causal relationships behind the experimental data, a structural causal model to quantitatively estimate the strength of causal links among salinity, dispersant addition, cell abundance, biosurfactant productivity and oil biodegradation was built. The estimated causal effects were integrated into a weighted directed acyclic graph, which showed that overall positive effects of dispersant addition on oil biodegradation was mainly through the enrichment of cell abundance. These findings can benefit decision-making prior dispersant application under different saline environments.
Collapse
Affiliation(s)
- Yiqi Cao
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Qiao Kang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Qinhong Cai
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
13
|
Chen Z, An C, Wang Y, Zhang B, Tian X, Lee K. A green initiative for oiled sand cleanup using chitosan/rhamnolipid complex dispersion with pH-stimulus response. CHEMOSPHERE 2022; 288:132628. [PMID: 34687682 DOI: 10.1016/j.chemosphere.2021.132628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The released oil can affect the vulnerable shoreline environment if the oil spills happen in coastal waters. The stranded oil on shorelines is persistent, posing a long-term influence on the intertidal ecosystem after weathering. Therefore, shoreline cleanup techniques are required to remove the oil from the shoreline environment. In this study, a new shoreline cleanup initiative using chitosan/rhamnolipid (CS/RL) complex dispersion with pH-stimulus response was developed for oiled sand cleanup. The results of factorial and single-factor design revealed that the CS/RL complex dispersion maintained high removal efficiency for oiled sand with different levels of oil content in comparison to using rhamnolipid alone. However, the increase of salinity negatively affected the removal efficiency. The electrostatic screening effect of high ionic strength can hinder the formation of the CS/RL complex, and thus reduce removal efficiency. The pH-responsive characteristic of chitosan allows the easy separation of water and oil in washing effluent. The chitosan polyelectrolytes aggregated and precipitated due to the deprotonation of amino groups by adjusting the pH of the washing effluent to above 8. The microscope image demonstrated that the chitosan aggregates wrapped around the oil droplets and settled to the bottom together, thus achieving oil-water separation. Such pH-stimulus response may help achieve an easy oil-water separation after washing. These findings have important implications for developing the new strategies of oil spill response.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada.
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON, K1A 0E6, Canada
| |
Collapse
|
14
|
Metagenomic and Metatranscriptomic Responses of Chemical Dispersant Application during a Marine Dilbit Spill. Appl Environ Microbiol 2022; 88:e0215121. [PMID: 35020455 DOI: 10.1128/aem.02151-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1500 mL) microcosms without nutrients addition using low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved into the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic based Metagenome Assembled Genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. Importance In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days) whereas exerting insignificant effects in the late stage (50 days), from both substances removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation, and clarified their degradation and antioxidation mechanisms. The findings would help to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit, and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.
Collapse
|
15
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|