1
|
Gong P, Liu H, Yu T, Jiang C, Gou E, Guan J, Chen H, Kang H. Evaluation of resistance risk in soil due to antibiotics during application of penicillin V fermentation residue. ENVIRONMENTAL TECHNOLOGY 2024; 45:5173-5181. [PMID: 37955258 DOI: 10.1080/09593330.2023.2283807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
The soil application of hydrothermally treated penicillin V fermentation residue (PFR) is attractive but challenged, due to the concern of the resistance risk in soil related to residual antibiotics. In this study, a lab-scale incubation experiment was conducted to investigate the influence of penicillin V on antibiotic resistance genes (ARGs) in PFR-amended soil via qPCR. The introduced penicillin V in soil could not be persistent, and its degradation occurred mainly within 2 days. The higher number of soil ARGs was detected under 108 mg/kg of penicillin V than lower contents (≤54 mg/kg). Additionally, the relative abundance of ARGs was higher in soil spiked with penicillin V than that in blank soil, and the great increase in the relative abundance of soil ARGs occurred earlier under 108 mg/kg of penicillin V than lower contents. The horizontal gene transfer might contribute to the shift of ARGs in PFR-amended soil. The results indicated that the residual penicillin V could cause the proliferation of soil ARGs and should be completely removed by hydrothermal treatment before soil application. The results of this study provide a comprehensive understanding of the resistance risk posed by penicillin V during the application of hydrothermally pretreated PFR.
Collapse
Affiliation(s)
- Picheng Gong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tingting Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Cuishuang Jiang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Enfang Gou
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jingze Guan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Huayuan Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Haoze Kang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| |
Collapse
|
2
|
Guo C, Ma Y, Li Y, Wang Z, Lin S, Dong R, Liu S. Effects of Hydrothermal Pretreatment and Anaerobic Digestion of Pig Manure on the Antibiotic Removal and Methane Production. Appl Biochem Biotechnol 2024; 196:7104-7127. [PMID: 38483763 DOI: 10.1007/s12010-024-04900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 11/21/2024]
Abstract
Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.
Collapse
Affiliation(s)
- Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yanfang Ma
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA, 22202, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
- Yantai Research Institute, China Agricultural University, Yantai, 264670, People's Republic of China.
| |
Collapse
|
3
|
Yang G, Xu Y, Wang J. Antibiotic fermentation residue for biohydrogen production: Inhibitory mechanisms of the inherent antibiotic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173986. [PMID: 38876344 DOI: 10.1016/j.scitotenv.2024.173986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic fermentation residue, which is generated from the microbial antibiotic production process, has been a troublesome waste faced by the pharmaceutical industry. Dark fermentation is a potential technology to treat antibiotic fermentation residue in terms of renewable H2 generation and waste management. However, the inherent antibiotic in antibiotic fermentation residue may inhibit its dark fermentation performance, and current understanding on this topic is limited. This investigation examined the impact of the inherent antibiotic on the dark H2 fermentation of Cephalosporin C (CEPC) fermentation residue, and explored the mechanisms from the perspectives of bacterial communities and functional genes. It was found that CEP-C in the antibiotic fermentation residue significantly inhibited the H2 production, with the H2 yield decreasing from 17.2 mL/g-VSadded to 12.5 and 9.6 mL/g-VSadded at CEP-C concentrations of 100 and 200 mg/L, respectively. CEP-C also prolonged the H2-producing lag period. Microbiological analysis indicated that CEP-C remarkably decreased the abundances of high-yielding H2-producing bacteria, as well as downregulated the genes involved in hydrogen generation from the"pyruvate pathway" and"NADH pathway", essentially leading to the decline of H2 productivity. The present work gains insights into how cephalosporin antibiotics influence the dark H2 fermentation, and provide guidance for mitigating the inhibitory effects.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Youtong Xu
- China National Chemical Engineering International Corporation Ltd., Beijing 100020, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Zhang M, Chen Q, Zhang Y, Zhang R, Chen Y, Mu J. Detoxification of vancomycin fermentation residue by hydrothermal treatment and pyrolysis: Chemical analysis and toxicity tests. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:132-142. [PMID: 38744165 DOI: 10.1016/j.wasman.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Vancomycin fermentation residue (VFR) is a by-product of the pharmaceutical industry with high ecotoxicity caused by the residual antibiotics, antibiotic resistance genes (ARGs), and heavy metals (HMs). In this study, the detoxification effect of hydrothermal treatment (HT) and pyrolysis for VFR was assessed using chemical analysis and toxicity tests. When VFR was subjected to HT and pyrolysis at ≥400 °C, more than 99.70 % of the residual vancomycin and all ARGs were removed. The HMs contents in VFR followed the order of manganese (676.2 mg/kg) > zinc (148.6 mg/kg) > chromium (25.40 mg/kg) > copper (17.20 mg/kg), and they were highly bioavailable and easily leached. However, HT and pyrolysis (≥400 °C) substantially reduced the bioavailable fractions and leaching properties of the HMs. After HT and pyrolysis at ≥ 400 °C, the potential ecological risk of HMs in VFR was reduced from considerable to moderate/low levels. The elutriate acute toxicity test suggested that HT and pyrolysis at ≥ 400 °C effectively reduced the toxicity of VFR to an acceptable level (p < 0.05). This study demonstrates that HT and pyrolysis (≥400 °C) are promising methods for treating VFR and detoxifying it, and the treated products are safe for further reutilization.
Collapse
Affiliation(s)
- Mingdong Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China
| | - Qinpeng Chen
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yuting Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Ruirui Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Yunchao Chen
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Jingli Mu
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
5
|
Wang D, Dong Y, Xin S, Li Y, Chen N, Liu Y, Wang Q, Liu G, Liu Y, Liu H, Xin Y. Safe utilization of bioresources in gentamicin mycelial residues by thermal treatment: Antibiotic degradation, resistance gene inactivation and available nutrients promotion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:245-253. [PMID: 38219462 DOI: 10.1016/j.wasman.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Gentamicin mycelium residues (GMRs) abundant in organic substances were generated during the production of gentamicin. Inappropriate handling techniques not only waste valuable resources, they could also result in residual gentamicin into the natural environment, leading to the generation of antibiotic resistance genes (ARGs), which would cause a significant threat to ecological system and human health. In the present work, the effects of thermal treatment on the removal of residual gentamicin in GMRs, as well as the changes of associated ARGs abundance, antimicrobial activity and bioresources properties were investigated. The results indicated that the hazards of GMRs was significantly reduced through thermal treatment. The degradation rate of residual gentamicin in GMRs reached 100 %, the total abundance of gentamicin resistance genes declined from 8.20 to 1.14 × 10-5 and the antibacterial activity of the decomposition products of GMRs on Vibrio fischeri was markedly reduced at 200 °C for 120 min. Additionally, the thermal treatment remarkably influenced the bioresource properties of GMRs-decomposition products. The release of soluble organic matters including soluble carbohydrates and soluble proteins have been enhanced in GMRs, while excessively high temperatures could lead to a reduction of nutrient substances. Generally, thermal treatment technology was a promising strategy for synergistic reducing hazards and utilizing bioresources of GMRs.
Collapse
Affiliation(s)
- Dong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Dong
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuefei Li
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningyi Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yulin Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianwen Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Costa BF, Zarei-Baygi A, Md Iskander S, Smith AL. Antibiotic resistance genes fate during food waste management - Comparison between thermal treatment, hyperthermophilic composting, and anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 388:129771. [PMID: 37739184 DOI: 10.1016/j.biortech.2023.129771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The fate of eight different antibiotic resistance genes (ARGs) in food waste (sul1, sul2, tetO, tetW, ermF, ermB, ampC, oxa-1), intI1, and rpoB were monitored during thermal treatment (pyrolysis and incineration), hyperthermophilic composting, and anaerobic membrane bioreactor (AnMBR) treatment. ARGs in food waste ranged from 2.9 × 106 to 3.5 × 109 copies/kg with ampC being the least abundant and sul1 being the most abundant. Thermal treatment achieved removal below detection limits of all ARGs. Only two ARGs (sul1 and ampC) persisted in hyperthermophilic composting. While all genes except for ermB decreased in the AnMBR effluent relative to the food waste feed, sul1 remained at relatively high abundance. Biosolids on the contrary, accumulated tetO, ampC and sul2 in all tested operating conditions. Thermal treatment, despite limited resource recovery, provides the most effective mitigation of ARG risk in food waste.
Collapse
Affiliation(s)
- Bianca F Costa
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14(th) Ave N, Fargo, ND 58102, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Yin Y, Zhang T, He S, Wang J. Volatile fatty acids recovery and antibiotic degradation from erythromycin fermentation residues by combined thermal pretreatment and anaerobic fermentation: Insights into microbial communities and metabolic pathways. BIORESOURCE TECHNOLOGY 2023; 387:129691. [PMID: 37625654 DOI: 10.1016/j.biortech.2023.129691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
High resistance of erythromycin has been the key factor restricting the disposal of erythromycin fermentation residues (EFR). Considering the high sensitivity of erythromycin to acidic conditions, anaerobic fermentation may be a good approach for EFR treatment, through which pH decreases along with the volatile fatty acids (VFA) accumulation. This study firstly explored the EFR treatment by combined thermal pretreatment and anaerobic fermentation. Results showed that thermal pretreatment and anaerobic fermentation exhibited a synergistic effect on erythromycin removal. Erythromycin concentration decreased to 20.0 mg/L with the maximum removal rate of 60.0%, which was 140% and 71.4% higher than erythromycin removal by sole thermal pretreatment and anaerobic fermentation. Thermal pretreatment induced the increased VFA production by 22.3% with the highest VFA concentration of 5325.4 mg/L. Microbial analysis shows that thermal pretreatment stimulated erythromycin degradation and VFA production by increasing the microbial diversity and enriching the functional enzymes involved in acetate-producing pathways.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Tao Zhang
- Dasheng Electron Accelerator Technology Co., Ltd., China General Nuclear Power Group, Suzhou, Jiangsu 215214, PR China
| | - Shijun He
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Dasheng Electron Accelerator Technology Co., Ltd., China General Nuclear Power Group, Suzhou, Jiangsu 215214, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Yin Y, Lou T, Song W, Wang C, Wang J. Production of medium chain fatty acids from fermentation of antibiotic residuals: Fate of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 379:129056. [PMID: 37059340 DOI: 10.1016/j.biortech.2023.129056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The potential of antibiotic resistance genes (ARGs) amplification restricts the biological recovery of antibiotic fermentation residues (AFRs) through two-stage anaerobic fermentation. This study explored the fate of ARGs during the fermentation of AFRs that comprising of acidification and chain elongation (CE). Results showed that with the alteration of fermentation process from acidification to CE, microbial richness was significantly increased, total abundance of ARGs was slightly decreased by 1.84%, and the significant negative correlations between ARGs and microbes were increased, implied the inhibitory effect of CE microbes to ARGs amplification. However, the total abundance of mobile genetic elements (MGEs) was increased by 24.5%, indicating that the potential of gene horizontal transfer of ARGs increased. This work suggested that two-stage anaerobic fermentation could effectively restrict the ARGs amplification, but more concerns are needed for the long-term dissemination of ARGs.
Collapse
Affiliation(s)
- Yanan Yin
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Tianru Lou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weize Song
- Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, PR China
| | - Cheng Wang
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Zhang M, Chen Q, Zhang R, Zhang Y, Wang F, He M, Guo X, Yang J, Zhang X, Mu J. Pyrolysis of Ca/Fe-rich antibiotic fermentation residues into biochars for efficient phosphate removal/recovery from wastewater: Turning hazardous waste to phosphorous fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161732. [PMID: 36682552 DOI: 10.1016/j.scitotenv.2023.161732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Ca/Fe-rich antibiotic fermentation residues (AFRs), a type of hazardous waste, can be regarded as recyclable biomass and metal resources. However, concurrent detoxification and reutilization of biomass and metals resources from AFRs have never been reported before. In this study, Ca/Fe-rich vancomycin fermentation residues were pyrolyzed into biochar to adsorb phosphate for the first time. The residual vancomycin and antibiotic resistance genes were completely decomposed during pyrolysis. The resultant Ca/Fe-rich biochar exhibited excellent performance at adsorbing phosphate without further modifications. The process had rapid kinetics and a maximum adsorption capacity of 102 mg P/g. Ca and Fe were the active sites, whereas different mechanisms were observed under acidic and alkaline conditions. Surprisingly, HCO3- enhanced phosphate adsorption with an increase of adsorption capacity from 43.9 to 71.0 mg/g when HCO3- concentration increased from 1 to 10 mM. Furthermore, actual wastewater could be effectively treated by the biochar. The phosphate-rich spent biochar significantly promoted seed germination (germination rate: 96.7 % vs. 80.0 % in control group, p < 0.01) and seedling growth (shoot length was increased by 57.9 %, p < 0.01) due to the slow release of bioavailable phosphate, and thus could be potentially used as a phosphorous fertilizer. Consequently, the hazardous waste was turned into phosphorous fertilizer, with the additional benefits of detoxifying AFRs, reutilizing biomass and metal resources from AFRs, controlling phosphate pollution, and recovering phosphate from wastewater.
Collapse
Affiliation(s)
- Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Qinpeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Ruirui Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Yuting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Feipeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Minzhen He
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Xiumei Guo
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Jian Yang
- Fuzhou Fuxing Pharmaceutical Co., Ltd. of Lizhu Group, Fuzhou 350309, PR China
| | - Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
10
|
Zhang Y, Hu J, Cheng X, Tahir MH. Pyrolysis characteristics, kinetics, and biochar of fermented pine sawdust-based waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39994-40007. [PMID: 36602730 DOI: 10.1007/s11356-022-25084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The objective of current study is to explore the energy recovery potential of fermentation residues. In this perspective, pyrolysis characteristics, kinetics, and modified biochar derived from pine sawdust after fermentation (FPD) were determined, and comparison was established with pine sawdust (PD). The variation range of comprehensive pyrolysis index (CPI) values of FPD was found 6.51 × 10-7-16.38 × 10-7%2·min-2·°C-3, significantly higher than that of untreated samples determined under the same experimental conditions. The average activation energy of FPD was 367.95 kJ/mol, 389.45 kJ/mol, and 346.55 kJ/mol calculated by Flynn-Wall-Ozawa (FWO) method, Kissinger-Akahira-Sonuse (KAS), and Starink method respectively, and importantly, these values are much higher than those of PD. Additionally, fermentation could enhance the adsorption capacity for methylene blue of biochar from 0.76 mg/g to 1.6 mg/g due to the abundant surface functional groups and three-dimensional internal pore structure. The adsorption pattern of fermented pine wood shifted from chemisorption dominated to the synergetic adsorption of surface functional groups adsorption and intragranular filling. These results show that FPD has favorable pyrolytic properties, and the derived biochar has adsorption properties, which is the basis for designing pyrolysis process and reusing fermentation residues. HIGHLIGHTS: The FPD has higher values of CPI and activation energy than the PD. FPD-derived biochar has higher adsorption capacity than PD-derived biochar. The fermentation improves the pyrolysis performance. The fermentation enhances adsorption capacity due to unique structure of biochar.
Collapse
Affiliation(s)
- Yiteng Zhang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Jinan, 250061, China
| | - Jun Hu
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Jinan, 250061, China
| | - Xingxing Cheng
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China.
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, Jinan, 250061, China.
| | - Mudassir Hussain Tahir
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| |
Collapse
|
11
|
Li J, Ma D, Tian J, Sun T, Meng Q, Li J, Shan A. The responses of organic acid production and microbial community to different carbon source additions during the anaerobic fermentation of Chinese cabbage waste. BIORESOURCE TECHNOLOGY 2023; 371:128624. [PMID: 36642203 DOI: 10.1016/j.biortech.2023.128624] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The effects of glucose, fructose, sucrose and molasses on organic acid levels, protein degradation, nutrient preservation and bacteriome were studied during the anaerobic fermentation of Chinese cabbage waste. The results showed that fructose and molasses additions caused a significant (p < 0.05) increase in lactic acid production (82.16-89.79 %), acetic acid production (175.41-196.93 %), ammonia nitrogen formation (15.93-37.43 %) and reduction of neutral detergent fiber level (8.17-15.87 %). However, few positive effects of glucose and sucrose additions were found on organic acid production. Furthermore, carbon source additions enriched (p < 0.05) the acid-producing bacteria, such as Lactobacillus paralimentarius and Lactobacillus heilongjiangensis, upregulated (p < 0.05) the pathways of carbohydrate and lipid metabolisms and reduced (p < 0.05) the abundances of Lactobacillus buchneri and Escherichia coli and bacteria that were mobile elements-contained and stress-tolerant. Collectively, fructose and molasses additions enhanced the recycling of Chinese cabbage waste by anaerobic fermentation, in which the desired products are organic acids.
Collapse
Affiliation(s)
- Jiawei Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China
| | - Dongbo Ma
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China
| | - Jiahui Tian
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China
| | - Tongyu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China
| | - Qingwei Meng
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
12
|
Chen B, Guan H, Zhang Y, Liu S, Zhao B, Zhong C, Zhang H, Ding W, Song A, Zhu D, Liu L, Wulan B, Li H, Liu G, Feng X. Performance and mechanism of Pb2+ and Cd2+ ions’ adsorption via modified antibiotic residue-based hydrochar. Heliyon 2023; 9:e14930. [PMID: 37077678 PMCID: PMC10106921 DOI: 10.1016/j.heliyon.2023.e14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
This study investigated the hydrochar-based porous carbon prepared by combining the technical route of hydrothermal carbonization (HTC) + chemical activation. The hydrochar morphology was adjusted by changing the activation reaction conditions and adding metal salts. Experiments showed that the activation of KHCO3 significantly increased the specific surface area and pore size of the hydrochar. Besides, oxygen-rich groups on the surface of the activated hydrochar interacted with heavy metal ions to achieve efficient adsorption. The activated hydrothermal carbon adsorption capacity for Pb2+ and Cd2+ ions reached 289 and 186 mg/g, respectively. The adsorption mechanism study indicated that the adsorption of Pb2+ and Cd2+ was related to electrostatic attraction, ion exchange, and complexation reactions. The "HTC + chemical activation" technology was environmentally friendly and effectively implemented antibiotic residues. Carbon materials with high adsorption capacity can be prepared so that biomass resources can be utilized with excessive value, as a consequence presenting technical assistance for the comprehensive disposal of organic waste in the pharmaceutical industry and establishing a green and clean production system.
Collapse
Affiliation(s)
- Bingtong Chen
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Haibin Guan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Yue Zhang
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Suxiang Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Baofeng Zhao
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Cunqing Zhong
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Heming Zhang
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Wenran Ding
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Angang Song
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Di Zhu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Liangbei Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Bari Wulan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Huan Li
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guofu Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Xiangyu Feng
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| |
Collapse
|
13
|
Xie S, Wang Y, Ma C, Zhu G, Wang Y, Li C. Pyrolysis of antibiotic mycelial residue for biochar: Kinetic deconvolution, biochar properties, and heavy metal immobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116956. [PMID: 36502709 DOI: 10.1016/j.jenvman.2022.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The safe disposal of antibiotic mycelial residue (AMR), a hazardous waste, is a pressing problem owing to the spread of antibiotic and heavy metal pollution. In this study, AMR pyrolysis at different temperatures and heating rates was investigated to prepare valuable biochar for heavy metal immobilization. The results showed that AMR decomposition mainly involved three pseudo-reactions, with average activation energies of 252.4, 149.8, and 219.7 kJ/mol, that fitted a three-dimensional diffusion model. Increasing the pyrolysis temperature and heating rate decreased the yield and volatile matter content of biochar, but the ash content, fixed carbon content, and aromaticity increased. The AMR-derived biochar had a favorable fuel property (18.1-19.8 MJ/kg) and stability against degradation in soil. Calcium oxalate hydrate, a major mineral in AMR, degraded during biochar formation. Furthermore, high pyrolysis temperature promoted the residual fractions of Cr, Cu, Zn, Cd, and Pb in biochar, more so than did the heating rate, inducing a low potential ecological risk. In particular, the leaching rate of Zn decreased from 46.9% in AMR to 0.3% in biochar obtained at 700 °C with a heating rate of 10 °C/min. This study elucidates the formation process and physicochemical properties of AMR biochar, which helps in the harmless utilization of AMR as a carbon resource.
Collapse
Affiliation(s)
- Shengyu Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chuan Ma
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 1000872, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Wang Y, Li W, Wang Y, Turap Y, Wang Z, Zhang Z, Xia Z, Wang W. Anaerobic co-digestion of food waste and sewage sludge in anaerobic sequencing batch reactors with application of co-hydrothermal pretreatment of sewage sludge and biogas residue. BIORESOURCE TECHNOLOGY 2022; 364:128006. [PMID: 36155815 DOI: 10.1016/j.biortech.2022.128006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The effect of pretreatment technologies and reactor types on conversion efficiency and operating costs of anaerobic co-digestion of food waste and sewage sludge were investigated by 300-day continuous experiments. The volatile solids (VS) removal efficiency increased from 61% to 77% with the application of co-hydrothermal pretreatment of sewage sludge and biogas residue. Deep dewatering reduced the volume of hydrothermally pretreated biogas residue by 85%. When continuous stirred tank reactors (CSTRs) were converted to anaerobic sequencing batch reactors (ASBRs), vS removal efficiencies increased by 6%, attributed to a 1.4-1.6-fold increase in solids retention time (SRT). The bottom drainage of mineralized sludge every 40 days increased ASBR stability. Firmicutes and Methanosphaera dominated the bacterial and archaeal communities, respectively. Operating costs decreased by 14.9 US$/metric ton feedstock by applying ASBRs. Compared to CSTRs, ASBRs achieved higher organic matter conversion efficiency, smaller volume of biogas residue, and lower operating costs.
Collapse
Affiliation(s)
- Yidi Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Beijing Da Bei Nong Technology Group Co., LTD, Beijing 100080, China
| | - Yongkang Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yusan Turap
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhentong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhou Xia
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Yin Y, Wang J. Production of medium-chain fatty acids by co-fermentation of antibiotic fermentation residue with fallen Ginkgo leaves. BIORESOURCE TECHNOLOGY 2022; 360:127607. [PMID: 35835417 DOI: 10.1016/j.biortech.2022.127607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The co-fermentation of antibiotic fermentation residues (AFRs) and fallen Ginkgo leaves at C/N ratios of 10-60 was conducted for medium-chain fatty acids (MCFA) production. It was found that a proper C/N ratio could largely promote the MCFA accumulation. Group with C/N ratio of 50 exhibited highest MCFA production of 133.14 mmol C/L, which was 42 %-121 % higher than the other groups. Through the co-fermentation, substrate condition was optimized with rich micro-nutrients in AFRs and abundant polysaccharides in Ginkgo leaves, the hydrolysis of leaves was promoted by the active microbes in AFRs, and the predominance of CE microbes was also stimulated with the dilution of AFRs. The increased C/N ratio significantly affected the SCFA producers like genus Escherichia Shigella and Proteiniphilum, and enriched CE microbes like genus Romboutsia, Eubacterium and Clostridium_sensu_stricto_12. Functional enzymes analysis showed that both reverse β oxidation and fatty acid biosynthesis pathways were strengthened with the increased C/N ratio.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
16
|
Wang Y, Zhao X, Wang Y, Wang I, Turap Y, Wang W. Hydrothermal treatment enhances the removal of antibiotic resistance genes, dewatering, and biogas production in antibiotic fermentation residues. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128901. [PMID: 35500337 DOI: 10.1016/j.jhazmat.2022.128901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) are enriched in antibiotic fermentation residues (AFRs). In this study, we investigated the effect of hydrothermal treatment on dewatering, biogas production, and removal of ARGs in the penicillin fermentation residue (PFR). Solid, 120 µm particles in the PFR were disintegrated to 30 - 40 µm after 140 - 180 °C hydrothermal range. Of extracellular polymeric substance, 79.8 ± 0.4% was decomposed to release 82.2 ± 0.6% of bound water at 180 °C. The effective solid-liquid separation was achieved only after a hydrothermal treatment of 180 °C. More than 75% of organic matter in the filtrate was transformed into biogas by the upflow anaerobic sludge blanket (UASB). The absolute abundance of 16 S rRNA and ARGs decreased by 2.4 - 5.2 logs after hydrothermal treatment. The ratio of extracellular ARGs (eARGs) to total ARGs increased at 80 °C and decreased at higher temperature (>120 °C). The absolute abundance of ARGs increased by 0.7 - 1.6 logs in anaerobic digestion, and the relative abundances of ARGs based on 16 S rRNA plummeted by 3 logs. Most (98.7 ± 0.4%) ARGs were distributed in suspended solids and were removed by membrane filtration. Hydrothermal treatment demonstrated broad applicability to 10 varieties of AFRs.
Collapse
Affiliation(s)
- Yidi Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiumei Zhao
- NCPC Environment Protection & Research Co., LT, Shijiazhuang 050015, China
| | - Yongkang Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Iwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yusan Turap
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|