1
|
Teleky BE, Martău GA, Simon E, Plosca MP, Odocheanu R, Ranga F, Vodnar DC. Harnessing agro-industrial waste: Enzyme-driven biosynthesis in Itaconic acid production. Int J Biol Macromol 2025; 306:141437. [PMID: 39999715 DOI: 10.1016/j.ijbiomac.2025.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Itaconic acid (IA) is a highly soluble and stable bio-based chemical with diverse industrial applications, particularly in sustainable material production. Despite the growing demand for bio-based IA, efficient and sustainable production methods remain a challenge, particularly in optimizing fungal fermentation and by-product utilization. This study explores the synergistic use of solid-state fermentation utilizing Aspergillus awamori for enzyme production and hydrolysis, combined with submerged fermentation to optimize IA bioproduction from wheat bran by-products. The optimal levels of enzyme production observed on the third day were closely related to moisture's vital role in synthesis dynamics, influencing glucose concentration and enzyme activities. The activities of glucoamylase, cellulase, and endoglucanase exceeded 50 U/g, 55 FPU/g, and 15 U/g, respectively. Subsequent IA bioproduction using A. terreus was optimized under various initial pH levels, with pH 4 and 5 demonstrating superior IA yields of 8.082 ± 0.19 g/L and 10.782 ± 0.98 g/L, respectively. Scaling up challenges highlight the need for a 30 % enzyme extract in wheat bran hydrolysis, with economic favorability and achieving a 52 % IA conversion efficiency from citric acid. This approach underscores sustainable IA production from agro-industrial by-products, aiding the circular economy and bio-based processes.
Collapse
Affiliation(s)
- Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Gheorghe-Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Elemer Simon
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Mădălina-P Plosca
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Răzvan Odocheanu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Yi X, Li X, Han J, Liu Z, Shi X, Wen T, Zhu J. Itaconic acid production from corn stover hydrolysates for a newly isolated Aspergillus terreus through adaptive evolution. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03161-1. [PMID: 40227479 DOI: 10.1007/s00449-025-03161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Itaconic acid can be produced using lignocellulosic biomass; however, the inhibitors from pretreatment process of biorefinery are toxic to the fermenting strains. Here, with 35.70 ± 0.69 g/L (0.19 ± 0.05 g/L·h and 73.84 ± 0.01%) itaconic acid from shake flask fermentation of synthetic medium (SM), a newly isolated Aspergillus terreus just produced 1.01 ± 0.01 g/L itaconic acid from corn stover hydrolysates (CSH) for the serious block of aldehyde inhibitors and acetic acid. Convincingly, 25.34 ± 3.94 g/L (0.13 ± 0.02 g/L·h and 37.92 ± 3.89%) itaconic acid was achieved from the detoxified CSH (with residual 0.49 g/L acetic acid) using 4.0% activated charcoal. 21.64 ± 2.42 g/L (0.05 ± 0.01 g/L·h and 26.96 ± 7.81%) itaconic acid was further achieved from CSH for the adapted A. terreus with better degradation ability of furanic aldehydes and phenolic aldehydes. Furthermore, the 108 mutation sites of nine genes from adaptive laboratory evolution (ALE) for A. terreus were further uncovered through single nucleotide polymorphisms (SNPs) analysis, and thus would be responsible for the improved fermentability of itaconic acid from CSH. The current work broke the bottlenecks in itaconic acid fermentation directly from CSH through improving A. terreus using directed evolution technique, and thus would provide a strain biocatalyst A. terreus and establish the alternative strategy to efficiently produce itaconic acid using corn stover.
Collapse
Affiliation(s)
- Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xinji Li
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jianqi Han
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhidan Liu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaohui Shi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Tao Wen
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, School of Petrochemical Engineering, School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Garg S, Kim M, Romero-Suarez D. Current advancements in fungal engineering technologies for Sustainable Development Goals. Trends Microbiol 2025; 33:285-301. [PMID: 39645481 DOI: 10.1016/j.tim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Fungi are emerging as key organisms in tackling global challenges related to agricultural and food productivity, environmental sustainability, and climate change. This review delves into the transformative potential of fungal genomics and metabolic engineering, two forefront fields in modern biotechnology. Fungal genomics entails the thorough analysis and manipulation of fungal genetic material to enhance desirable traits, such as pest resistance, nutrient absorption, and stress tolerance. Metabolic engineering focuses on altering the biochemical pathways within fungi to optimize the production of valuable compounds, including biofuels, pharmaceuticals, and industrial enzymes. By artificial intelligence (AI)-driven integration of genetic and metabolic engineering techniques, we can harness the unique capabilities of both filamentous and mycorrhizal fungi to develop sustainable agricultural practices, enhance soil health, and promote ecosystem restoration. This review explores the current state of research, technological advancements, and practical applications, offering insights into scalability challenges on how integrative fungal genomics and metabolic engineering can deliver innovative solutions for a sustainable future.
Collapse
Affiliation(s)
- Shilpa Garg
- Technical University of Denmark, 2800 Kongens Lyngby, Denmark; University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Minji Kim
- Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David Romero-Suarez
- ARC Center of Excellence in Synthetic Biology, Australian Genome Foundry, and School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Chen Y, Wang Z, Chen C, Xiao S, Lv J, Lin L, Liu J, Li X, Wang W, Wei D. Metabolic Engineering of Filamentous Fungus Trichoderma reesei for Itaconic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4716-4724. [PMID: 39963051 PMCID: PMC11869998 DOI: 10.1021/acs.jafc.4c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Itaconic acid (IA) is a multifunctional platform chemical with numerous biological functions. Here, Trichoderma reesei was engineered as a remarkable cell factory to produce IA. Heterologous overexpression of the mitochondrial tricarboxylate transport protein and cis-aconitate decarboxylase from Aspergillus terreus in T. reesei initiated IA production with a titer of 20 g/L. By increasing the copy number of mttA and cadA and the overexpression of the plasma membrane transporter proteins (MFSA), the titer of IA reached 56.7 g/L. The precursor synthesis pathway of IA was overexpressed by the overexpression of aconitase and citrate synthase, and the IA competition pathway was blocked by the deletion of the P450 monooxygenase gene cyp3 to further enhance IA production. The final strain resulted in a final IA titer of 93.5 g/L through fed-batch fermentation in a 1 L bioreactor. Our study demonstrates that T. reesei can serve as a relevant platform in industry for IA production.
Collapse
Affiliation(s)
- Yumeng Chen
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Wang
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Cangcang Chen
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Xiao
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Lv
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Lin
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayu Liu
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Xinrui Li
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Chandukishore T, Biswas TS, Prabhu AA. Valorization of sugarcane bagasse for high-yield production of laccase through Aspergillus terreus for effective azo dye decolourization. Prep Biochem Biotechnol 2024; 54:1170-1181. [PMID: 38557365 DOI: 10.1080/10826068.2024.2332881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synthetic dyes such as azo dyes are significant pollutants in the wastewater released from various textile industries. The low biodegradability and production from synthetic sources with high shelf life make azo dyes a challenging material for degradation. This study used chemically mutated Aspergillus terrus in the laccase production under solid-state fermentation using sugarcane bagasse. Initially, the wild-type strain produced a laccase activity of 4.12 U/mL. Later, the alkaline pretreatment of sugarcane bagasse showed a significant increase in laccase activity by 38.9%. Further, random mutagenesis treatment with 100 mM EMS generated a hyper laccase-producing strain with a 2.3-fold increment in laccase activity compared to the wild-type strain. The enzyme displayed optimal activity at pH 6.5 and 35 °C. The metal ions such as Fe3+ (29.4 U/mL), Fe2+ (20.8 U/mL) and Cu2+ (18.05 U/mL) showed positive effects on laccase activity. The crude laccase was used to bioremediate Congo red, a prominent azo dye used in textile and pharmaceutical industries. The preliminary studies with a crude enzyme displayed 68.86% dye decolourization after 24 h of incubation. Additionally, with Taguchi orthogonal array optimization experiments, the maximal dye decolorization of 78.24% was achieved by maintaining crude enzyme concentration (20 U), dye concentration (25 mg/L) and pH 4.5.
Collapse
Affiliation(s)
- T Chandukishore
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Tuhin Subhra Biswas
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
6
|
Das S, T C, Selvasembian R, Prabhu AA. Mixed food waste valorization using a thermostable glucoamylase enzyme produced by a newly isolated filamentous fungus: A sustainable biorefinery approach. CHEMOSPHERE 2024; 352:141480. [PMID: 38401866 DOI: 10.1016/j.chemosphere.2024.141480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Food waste is a lucrative source of complex nutrients, which can be transformed into a multitude of bioproducts by the aid of microbial cell factories. The current study emphasizes isolating Glucoamylase enzyme (GA) producing strains that can effectively break down mixed food waste (MW), which serves as a substrate for biomanufacturing. The screening procedure relied heavily on the growth of isolated fungi on starch agar media, to specifically identify the microbes with the highest starch hydrolysis potential. A strain displayed the highest GA activity of 2.9 ± 0.14 U/ml which was selected and identified as Aspergillus fumigatus via molecular methods of identification. Exposure of the A. fumigatus with 200 mM Ethyl methanesulphonate (EMS) led to a 23.79% increase compared to the wild-type GA. The growth conditions like cultivation temperature or the number of spores in the inoculum were investigated. Further, maximum GA activity was exhibited at pH 5, 55 °C, and at 5 mM Ca2+ concentration. The GA showed thermostability, retaining activity even after long periods of exposure to temperatures as high as 95 °C. The improvement of hydrolysis of MW was achieved by Taguchi design where a maximum yield of 0.57 g g-1 glucose was obtained in the hydrolysate. This study puts forth the possibility that mixed food waste, despite containing spices and other microbial growth-inhibitory substances, can be efficiently hydrolyzed to release glucose units, by robust fungal cell factories. The glucose released can then be utilized as a carbon source for the production of value-added products.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chandukishore T
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
7
|
Ernst P, Wirtz A, Wynands B, Wierckx N. Establishing an itaconic acid production process with Ustilago species on the low-cost substrate starch. FEMS Yeast Res 2024; 24:foae023. [PMID: 39038994 PMCID: PMC11312366 DOI: 10.1093/femsyr/foae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
8
|
Ye DY, Moon JH, Jung GY. Recent Progress in Metabolic Engineering of Escherichia coli for the Production of Various C4 and C5-Dicarboxylic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10916-10931. [PMID: 37458388 DOI: 10.1021/acs.jafc.3c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
As an alternative to petrochemical synthesis, well-established industrial microbes, such as Escherichia coli, are employed to produce a wide range of chemicals, including dicarboxylic acids (DCAs), which have significant potential in diverse areas including biodegradable polymers. The demand for biodegradable polymers has been steadily rising, prompting the development of efficient production pathways on four- (C4) and five-carbon (C5) DCAs derived from central carbon metabolism to meet the increased demand via the biosynthesis. In this context, E. coli is utilized to produce these DCAs through various metabolic engineering strategies, including the design or selection of metabolic pathways, pathway optimization, and enhancement of catalytic activity. This review aims to highlight the recent advancements in metabolic engineering techniques for the production of C4 and C5 DCAs in E. coli.
Collapse
Affiliation(s)
- Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
9
|
Diankristanti PA, Ng IS. Microbial itaconic acid bioproduction towards sustainable development: Insights, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023:129280. [PMID: 37290713 DOI: 10.1016/j.biortech.2023.129280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Microbial biomanufacturing is a promising approach to produce high-value compounds with low-carbon footprint and significant economic benefits. Among twelve "Top Value-Added Chemicals from Biomass", itaconic acid (IA) stands out as a versatile platform chemical with numerous applications. IA is naturally produced by Aspergillus and Ustilago species through a cascade enzymatic reaction between aconitase (EC 4.2.1.3) and cis-aconitic acid decarboxylase (EC 4.1.1.6). Recently, non-native hosts such as Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Yarrowia lipolytica have been genetically engineered to produce IA through the introduction of key enzymes. This review provides an up-to-date summary of the progress made in IA bioproduction, from native to engineered hosts, covers in vivo and in vitro approaches, and highlights the prospects of combination tactics. Current challenges and recent endeavors are also addressed to envision comprehensive strategies for renewable IA production in the future towards sustainable development goals (SDGs).
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
10
|
Gopaliya D, Zaidi S, Srivastava N, Rani B, Kumar V, Kumar Khare S. Integrated fermentative production and downstream processing of L-malic acid by Aspergillus wentii using cassava peel waste. BIORESOURCE TECHNOLOGY 2023; 377:128946. [PMID: 36958684 DOI: 10.1016/j.biortech.2023.128946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
L-malic acid (L-MA) is an industrially significant chemical with enormous potential. The fungal cell factories could be exploited to harvest it on large scales. In our study, Aspergillus wentii strain (MTCC 1901 T) was explored for L-MA production. Initially, the L-MA production was carried out using glucose with optimization of parameters influencing product accumulation (pH and CaCO3). The fermentation resulted in L-MA titer of 37.9 g/L with 0.39 g/g yield. Then, cassava peel waste (CPW) was used for L-MA production by separate hydrolysis and fermentation. Optimized acidic and enzymatic hydrolysis resulted in glucose release of 0.53 and 0.66 g/g CPW, respectively. The strain accumulated 20.9 g/L and 33.1 g/L L-MA with corresponding yields of 0.25 g/g and 0.34 g/g during batch cultivation using acid and enzyme hydrolysate, respectively. Finally, the produced L-MA was separated using an inexpensive solvent extraction method. Among various solvents used, n-butanol exhibited maximum L-MA extraction efficiency (31%).
Collapse
Affiliation(s)
- Deeksha Gopaliya
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Rani
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Genetic design of co-expressing a novel aconitase with cis-aconitate decarboxylase and chaperone GroELS for high-level itaconic acid production. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
Recent Advances on the Production of Itaconic Acid via the Fermentation and Metabolic Engineering. FERMENTATION 2023. [DOI: 10.3390/fermentation9010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Itaconic acid (ITA) is one of the top 12 platform chemicals. The global ITA market is expanding due to the rising demand for bio-based unsaturated polyester resin and its non-toxic qualities. Although bioconversion using microbes is the main approach in the current industrial production of ITA, ecological production of bio-based ITA faces several issues due to: low production efficiency, the difficulty to employ inexpensive raw materials, and high manufacturing costs. As metabolic engineering advances, the engineering of microorganisms offers a novel strategy for the promotion of ITA bio-production. In this review, the most recent developments in the production of ITA through fermentation and metabolic engineering are compiled from a variety of perspectives, including the identification of the ITA synthesis pathway, the metabolic engineering of natural ITA producers, the design and construction of the ITA synthesis pathway in model chassis, and the creation, as well as application, of new metabolic engineering strategies in ITA production. The challenges encountered in the bio-production of ITA in microbial cell factories are discussed, and some suggestions for future study are also proposed, which it is hoped offers insightful views to promote the cost-efficient and sustainable industrial production of ITA.
Collapse
|
13
|
Narisetty V, Adlakha N, Kumar Singh N, Dalei SK, Prabhu AA, Nagarajan S, Naresh Kumar A, Amruthraj Nagoth J, Kumar G, Singh V, Kumar V. Integrated biorefineries for repurposing of food wastes into value-added products. BIORESOURCE TECHNOLOGY 2022; 363:127856. [PMID: 36058538 DOI: 10.1016/j.biortech.2022.127856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- Innovation Centre, Moolec Science Pvt. Ltd., Gallow Hill, Warwick CV34 6UW, United Kingdom
| | - Nidhi Adlakha
- Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India
| | - Navodit Kumar Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New-Delhi 110016, India
| | - Sudipt Kumar Dalei
- Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India
| | - Ashish A Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Sanjay Nagarajan
- Sustainable Environment Research Centre, University of South Wales, Pontypridd CF37 4BB, United Kingdom
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Joseph Amruthraj Nagoth
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vijai Singh
- Department of Biosciences, Indrashil University, Rajpur, Gujarat, India
| | - Vinod Kumar
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
14
|
Sreekala AGV, Ismail MHB, Nathan VK. Biotechnological interventions in food waste treatment for obtaining value-added compounds to combat pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62755-62784. [PMID: 35802320 DOI: 10.1007/s11356-022-21794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the globe is facing tremendous effects due to the unnecessary piling of municipal solid waste among which food waste holds a greater portion. This practice not only affects the environment in terms of generating greenhouse gas emissions but when left dumped in landfills will also trigger poverty and malnutrition. This review focuses on the global trend in food waste management strategies involved in the effective utilization of food waste to produce various value-added products in a microbiology aspect, thereby diminishing the negative impacts caused by the unnecessary side effects of non-renewable energy sources. The review also detailed the efficiency of microorganisms in the production of various bio-energies as well. Further, recent attempts to the exploitation of genetically modified microorganisms in producing value-added products were enlisted. This also attempted to address food waste valorization techniques, the combined applications of various processes for an enhanced yield of different compounds, and addressed various challenges. Further, the current challenges involved in various processes and the effective measures to tackle them in the future have been addressed. Thus, the present review has successfully addressed the circular bio-economy in food waste valorization.
Collapse
Affiliation(s)
| | - Muhammad Heikal Bin Ismail
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra, Putrajaya, Malaysia
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
15
|
Awasthi MK, Harirchi S, Sar T, Vs V, Rajendran K, Gómez-García R, Hellwig C, Binod P, Sindhu R, Madhavan A, Kumar ANA, Kumar V, Kumar D, Zhang Z, Taherzadeh MJ. Myco-biorefinery approaches for food waste valorization: Present status and future prospects. BIORESOURCE TECHNOLOGY 2022; 360:127592. [PMID: 35809874 DOI: 10.1016/j.biortech.2022.127592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Vigneswaran Vs
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - A N Anoop Kumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram 673635, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
16
|
Zhang C, Ali Khan RA, Wei H, Wang R, Hou J, Liu T. Rapid and mass production of biopesticide Trichoderma Brev T069 from cassava peels using newly established solid-state fermentation bioreactor system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114981. [PMID: 35395529 DOI: 10.1016/j.jenvman.2022.114981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Converting agricultural waste into value-added biopesticides to replace chemical pesticides for plant protection is a good alternative for environmental sustainability and resource recycling. In this study, five tropical wastes (cassava peels, banana pseudostem, coconut shell, sugarcane bagasse, and pineapple peels) were screened as substrates for the rapid production of biopesticide Trichoderma Brev T069. Five single tests and a Box-Behnken design (BBD) with response surface methodology were used to optimize the culture conditions to improve the spore yield. The results showed that cassava peel was the optimal solid fermentation substrate, and the optimization enabled a spore yield of 9.31 × 109 spores/g at 3rd day, which was equal to 93.19% of spore yield obtained at 5th day (9.99 × 109 spores/g). A newly packed-bed bioreactor with agitation and ventilation system was developed and used to expand the production that 250 kg of biopesticide (2.89 × 109 spores/g) could be available on the 3rd day. A pot experiment indicated that the biopesticide T. Brev T069 obtained under this production system, when applied at 1 × 107 spores/g of soil had a 64.65% biocontrol efficiency on banana fusarium wilt. This study provides a practical solution for turning a tropical waste into an effective biopesticide which can prevent banana wilt disease, thereby helping to reduce disease management cost and overcome environmental hazards caused by synthetic pesticides.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Raja Asad Ali Khan
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China; Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | - HongYan Wei
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Rui Wang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China; Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan (Hainan University), Haikou, Hainan, 570228, PR China
| | - JuMei Hou
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan (Hainan University), Haikou, Hainan, 570228, PR China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, Hainan, 570228, PR China; Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan (Hainan University), Haikou, Hainan, 570228, PR China.
| |
Collapse
|
17
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Narisetty V, Cox R, Willoughby N, Aktas E, Tiwari B, Matharu AS, Salonitis K, Kumar V. Recycling bread waste into chemical building blocks using a circular biorefining approach. SUSTAINABLE ENERGY & FUELS 2021; 5:4842-4849. [PMID: 34604539 PMCID: PMC8477656 DOI: 10.1039/d1se00575h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/11/2021] [Indexed: 05/23/2023]
Abstract
Food waste is a global problem, causing significant environmental harm and resulting in substantial economic losses globally. Bread is the commonly wasted food item in the developed world and presents a severe problem for the majority of European nations. It is the second most wasted food item in the UK after potatoes, with an equivalent of 20 million slices of bread thrown away daily. Bread is a starchy material and a rich and clean source of easily extractable fermentable sugars - this is in direct contrast to lignocellulosic feedstocks where harsh physical, chemical and/or enzymatic pretreatment processes are required for release of fermentable sugars. Furthermore, these necessary lignocellulosic pretreatment methods often produce sugars contaminated with fermentation inhibitors. Therefore, bread waste presents a clear opportunity as a potential carbon source for novel commercial processes and, to this end, several alternative routes have been developed to utilize bread waste. Possibilities for direct recycling of bread waste within the food industry are limited due to the relatively short material lifetime, stringent process and hygiene requirements. Anaerobic digestion (AD) and incineration are commonly employed methods for the valorisation of bread waste, generating limited amounts of green energy but with little other environmental or economic benefits. Most food wastes and by-products in the UK including bakery waste are treated through AD processes that fail to harness the full potential of the these wastes. This short communication reviews the challenges of handling bread waste, with a focus on a specific UK scenario. The review will consider how bread waste is generated across the supply chain, current practices to deal with the waste and logistics challenges in waste collection. The presence of clean and high-quality fermentable sugars, proteins and other nutrients in bread make it an ideal substrate for generating chemicals, fuels, bioplastics, pharmaceuticals and other renewable products through microbial fermentations. We suggest potential applications for recycling bread waste into its chemical building blocks through a fermentative route where a circular biorefining approach could maximize resource recovery and environmental savings and eliminate waste to as close to zero as possible.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Emel Aktas
- School of Management, Cranfield University Cranfield MK43 0AL UK
| | | | - Avtar Singh Matharu
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry Heslington York YO10 5DD UK
| | - Konstantinos Salonitis
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| |
Collapse
|
19
|
Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
He M, Ma J, Chen Q, Zhang Q, Yu P. Engineered production of pyridoxal 5'-phosphate in Escherichia coli BL21. Prep Biochem Biotechnol 2021; 52:498-507. [PMID: 34431758 DOI: 10.1080/10826068.2021.1966801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the coenzyme of more than 140 enzymes and is widely used in various fields. In this study, to enhance the production of PLP in Escherichia coli BL21, the recombinant strain E. coli BL21/pETDuet-1-pdxj-zwf-dxs was constructed. The concentration of PLP in this strain was 82.69 mg/L, which was increased by 1.38-fold as compared to that in E. coli BL21. Glucose, yeast extract, and pH had an obvious impact on the concentration of PLP, and their optimal levels were 34.89 g/L, 31.17 g/L, and 10.07, respectively. The concentration of PLP under the optimal condition reached 2.23 g/L. The time-course analysis showed that the highest concentration of PLP was 2.32 g/L in recombinant strain after the induction for 12 h by 0.1 mM IPTG in a 1 L shake flask, which was increased by 38.76-fold as compared to that in E. coli BL21. This study provides a good basis for the efficient production of PLP in E. coli BL21.
Collapse
Affiliation(s)
- Min He
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Jian Ma
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|