1
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
2
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
3
|
Hashemzadeh F, Khoshmardan ME, Sanaei D, Ghalhari MR, Sharifan H, Inglezakis VJ, Arcibar-Orozco JA, Shaikh WA, Khan E, Biswas JK. Adsorptive removal of anthracene from water by biochar derived amphiphilic carbon dots decorated with chitosan. CHEMOSPHERE 2024; 352:141248. [PMID: 38280643 DOI: 10.1016/j.chemosphere.2024.141248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Anthracene belongs to the polycyclic aromatic hydrocarbon (PAH) consisting of benzene rings, unusually highly stable through more π-electrons and localized π-bond in entire rings. Aqueous-phase anthracene adsorption using carbon-based materials such as biochar is ineffective. In this paper, carbon dots (CDs) derived from the acid treatment of coconut shell biochar (CDs/MCSB) decorated with chitosan (CS) are successfully synthesized and applied for anthracene removal from aqueous solutions. The h-CDs/MCSB exhibited fast adsorption of anthracene with significant sorption capacity (Qmax = 49.26 mg g-1) with 95 % removal efficiency at 60 min. The study suggested chemisorption dominated monolayer anthracene adsorption onto h-CDs/MCSB, where a significant role was played by ion-exchange. Density Functional Theory (DFT) suggested the anthracene adsorption was dominated by the electrostatic interactions and delocalized electron, induced by higher polarizability of functional groups on the surface of hybrid CDs/MCSB assisted by chitosan (h-CDs/MCSB). In addition, the aromatic structure of CDs/MCSB and high polarizability of functional groups provided the strong interactions between benzene rings of anthracene and hybrid adsorbent-assisted multiple π-bond through delocalized π-bond and polarization-induced H-bond interactions. The presence of carboxylic and sulfonic groups on the CDs/MCSB surface also contributed to the effective adsorption of anthracene was confirmed by the fluorescence spectra. The results showed that the hybrid adsorbent was an effective material for removing PAHs, usually difficult to remove from water owing to the presence of benzene rings in their structures. Further, consistency in the DFT results suggested the outstanding binding capacity with the anthracene molecules with h-CDs/MCSB.
Collapse
Affiliation(s)
- Farzad Hashemzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran
| | - Maede Esmaeili Khoshmardan
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | | | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | | | - Javier A Arcibar-Orozco
- Research Department, CIATEC A.C. Centro de Innovación Aplicada en Tecnologías Competitivas, León, Mexico
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, India, 743368
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV 89154-4015, USA
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal - 741235, India.
| |
Collapse
|
4
|
Su Q, Wei X, Yang G, Ou Z, Zhou Z, Huang R, Shi C. In-situ conversion of geopolymer into novel floral magnetic sodalite microspheres for efficient removal of Cd(II) from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131363. [PMID: 37043850 DOI: 10.1016/j.jhazmat.2023.131363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In the present work, a novel, floral-like, magnetic sodalite microsphere (SODM) was synthesized in situ by using fly ash (FA) and metakaolin (MK) as raw materials and was used to remove Cd(II) from water. Its magnetism can solve the problems of adsorbent recovery and possible secondary pollution. During the static adsorption, SODM shows a maximum adsorption capacity of 245.17 mg/g. The adsorption of Cd(II) on the SODM surface is spontaneous, exothermic, and physicochemical adsorption, which was evaluated by thermodynamics, kinetics, and isotherm studies. During dynamic adsorption, SODM shows a maximum adsorption capacity of 342.74 mg/g in the simulated solution prepared by the deionized water, compared to 215.88 mg/g in the simulated solution prepared using Xiangsi Lake water from Guangxi Minzu University. At 0.5 g SODM dosage in the dynamic adsorption, the adsorption capacity could rise to 632.81 mg/g. These results demonstrated the excellent Cd (II) adsorption performance of the SODM. The adsorption of cadmium on the SODM surface includes the synergistic effects of electrostatic attraction, ion exchange, and surface coordination reaction. Besides, the SODM shows good regeneration performance in both the deionized water and Xiangsi Lake water. The present study explores SODM as an adsorbent for the Cd (II) removal from wastewater and unbolts the industrial applicability of the SODM in the field of wastewater purification.
Collapse
Affiliation(s)
- Qiaoqiao Su
- Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, Nanning, PR China; Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Xiang Wei
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Guangyao Yang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Zhaohui Ou
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Zhicheng Zhou
- Power Dispatching and Control Center, China Southern Power Grid Guangxi Power Grid Co Ltd, Guangxi, Nanning 530023, PR China
| | - Ronghua Huang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Caijun Shi
- Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha, PR China.
| |
Collapse
|
5
|
Wang H, Liang J, Huo P, Zhang L, Fan X, Sun S. Understanding the cadmium passivation and nitrogen mineralization of aminated lignin in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162334. [PMID: 36813204 DOI: 10.1016/j.scitotenv.2023.162334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Aminated lignin (AL) was prepared and first applied to remediation of cadmium (Cd) pollution in soil. Meanwhile, the nitrogen mineralization characteristics of AL in soil and its effect on soil physicochemical properties were elucidated by soil incubation experiment. The results showed that the Cd availability was dramatically lowered in soil by adding the AL. The DTPA-extractable Cd content of AL treatments was considerably reduced by 40.7-71.4 %. The soil pH (5.77-7.01) and absolute value of zeta potential (30.7-34.7 mV) enhanced simultaneously as the AL additions increased. The content of soil organic matter (SOM) (99.0-264.0 %) and total nitrogen (95.9-301.3 %) were gradually enhanced due to high C (63.31 %) and N (9.69 %) content in AL. Moreover, AL significantly elevated the content of mineral nitrogen (77.2-142.4 %) and available nitrogen (95.5-301.7 %). The first-order kinetic equation of soil nitrogen mineralization revealed that AL greatly enhanced nitrogen mineralization potential (84.7-143.9 %) and reduced environmental pollution by lowering the loss of soil inorganic nitrogen. AL could effectively reduce the availability of Cd through direct (self-adsorption) and indirect effects (improvement of soil pH, SOM and reduction of soil zeta potential), thereby achieving passivation of Cd in soil. In short, this work will develop a novel approach and technical support for soil heavy metal remediation, which is of great significance for improving the sustainable development of agricultural production.
Collapse
Affiliation(s)
- Haoran Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiamin Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pengju Huo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lidan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaolin Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Han X, Wang Z, Lu N, Tang J, Lu P, Zhu K, Guan J, Feike T. Comprehensive study on the hydrochar for adsorption of Cd(II): preparation, characterization, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64221-64232. [PMID: 37061638 DOI: 10.1007/s11356-023-26956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Hydrothermal carbonization process via converting invasive plants into functional materials may provide a novel strategy to comprehensively control and utilized the exotic invasive plants. In this study, Eupatorium adenophorum was utilized to fabricate the hydrochar via hydrothermal carbonization process, which was further applied to remove Cd(II). The results showed that the hydrochar was a mesoporous material with abundant O-containing functional groups (OFPs) on the surface. The adsorption isotherms were fitted by both the Langmuir and Freundlich models, and the maximum adsorption amount achieved 24.53 mg/g. The adsorption dynamics were governed by surface adsorption and film diffusion. pH and ionic strength can exert a strong influence on the adsorption efficiency. The mechanisms on the adsorption of Cd(II) on the hydrochar concluded the pore-filling effects, electrostatic interactions, ion exchange, precipitation, coordination with π electrons, and surface complexation with the OFPs, such as hydroxyl, carboxylic, phenol, acetyl, and ester groups. Thus, hydrothermal carbonization process may provide a promising technique to fabricate the hydrocar for the treatment of Cd(II), which may facilitate comprehensive control of invasive plants and boost to the carbon neutrality.
Collapse
Affiliation(s)
- Xu Han
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
| | - Jiaqing Tang
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Ping Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ke Zhu
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, 250000, People's Republic of China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, People's Republic of China.
| | - Til Feike
- Federal Research Centre for Cultivated Plants, Inst. for Strategies and Technology Assessment, Julius Kühn-Institut, 14532, Kleinmachnow, Germany
| |
Collapse
|
7
|
Jiang X, Jia Y, Ren D, Zhang N, Peng T, Huo Z. Magnetic seeds promoted high-density sulfonic acid-based hydrochar derived from sugar-rich wastewater for removal of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36872-36882. [PMID: 36564685 DOI: 10.1007/s11356-022-24900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Methylene blue (MB) removal from dyeing wastewater using low-cost bio-derived adsorbent is a significant and challenging field. Herein, magnetic sugar hydrochar (MGHC) precursors derived from sugar-rich wastewater with small particle size and rich oxygen-containing functional groups (OCFGs) are prepared from sugar-rich aqueous solution via Fe salt-modified hydrothermal procedure. The role of Fe3O4 nanoparticles formed during the sugar carbonization is to provide numerous magnetic seeds to generate MGHC with core-shell structure, which reduces the particle size of hydrochar. This increases the amount of OCFGs on the surface of MGHC for bonding the sulfonic acid groups. Therefore, sulfonic acid-modified MGHC-SA shows the rapid MB adsorption rate and excellent adsorption capacity. The highest MB capacity is 869.6 mg/g at pH = 11.0 and 298 K. Additionally, the MGHC-SA can be easily recovery by magnet. And the stability of MGHC-SA was also evaluated, no degradation of adsorption performance was observed, even the adsorbent was regenerated 10 times. This study puts forward a promising way to acquire functional groups rich and easy recovery hydrochar from sugar wastewater for MB removal.
Collapse
Affiliation(s)
- Xuelei Jiang
- College of Marine Ecology and Environment, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
- Shanghai Urban Construction Water Engineering Co., Ltd, 291 Wenshui East Road, Shanghai, 200434, China
| | - Yuyao Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Dezhang Ren
- College of Marine Ecology and Environment, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Nahui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Tao Peng
- Institute of Geochemistry, Chinese Academy of Science, 99 Lincheng Road West, Guiyang, 550081, China
| | - Zhibao Huo
- College of Marine Ecology and Environment, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
8
|
Efficient adsorption of BPA and Pb2+ by sulfhydryl-rich β-cyclodextrin polymers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Wang J, Wang Y, Wang J, Du G, Khan KY, Song Y, Cui X, Cheng Z, Yan B, Chen G. Comparison of cadmium adsorption by hydrochar and pyrochar derived from Napier grass. CHEMOSPHERE 2022; 308:136389. [PMID: 36099990 DOI: 10.1016/j.chemosphere.2022.136389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biochar (e.g. pyrochar and hydrochar) is considered a promising adsorbent for Cd removal from aqueous solution. Considering the vastly different physicochemical properties between pyrochar and hydrochar, the Cd2+ sorption capacity and mechanisms of pyrochars and hydrochars should be comparatively determined to guide the production and application of biochar. In this study, the hydrochars and pyrochars were prepared from Napier grass by hydrothermal carbonization (200 and 240 °C) and pyrolysis (300 and 500 °C), respectively, and the physicochemical properties and Cd2+ sorption performances of biochars were systematically determined. The pyrochars had higher pH and ash content as well as better stability, while the hydrochars showed more oxygen-containing functional groups (OFGs) and greater energy density. The pseudo second order kinetic model best fitted the Cd2+ sorption kinetics data of biochars, and the isotherm data of pyrochar and hydrochar were well described by Langmuir and Freundlich models, respectively. In comparison with hydrochar, the pyrochar exhibited better Cd2+ sorption capacity (up to 71.47 mg/g). With increasing production temperature, the Cd2+ sorption capacity of pyrochar elevated, while the reduction was found for hydrochar. The mineral interaction, complexation with surface OFGs, and coordination with π electron were considered the main mechanisms of Cd2+ removal by biochars. The minerals interaction and the complexation with OFGs was the dominant mechanism of Cd2+ removal by pyrochars and hydrochars, respectively. Therefore, the preparation technique and temperature have significant impacts on the sorption capacity and mechanisms of biochar, and pyrochar has better potential for Cd2+ removal than the congenetic hydrochar.
Collapse
Affiliation(s)
- Jiangtao Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Junxia Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guiyue Du
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanxing Song
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
10
|
Cui X, Wang J, Wang X, Du G, Khan KY, Yan B, Cheng Z, Chen G. Pyrolysis of exhausted hydrochar sorbent for cadmium separation and biochar regeneration. CHEMOSPHERE 2022; 306:135546. [PMID: 35777543 DOI: 10.1016/j.chemosphere.2022.135546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sorption is considered a cost-effective technique for cadmium (Cd) removal from water, while the exhausted Cd-enriched sorbent should be properly disposed of. In this study, pyrolysis of exhausted hydrochar sorbent was conducted at 300-900 °C, and the behavior of Cd and the physicochemical properties and environmental applications of the regenerated biochar were investigated. The vaporization of adsorbed Cd in hydrochar was greatly enhanced by elevating pyrolysis temperature, and almost no Cd was observed in the regenerated biochars obtained at 700-900 °C. In comparison with the raw hydrochar, the regenerated biochars showed higher pH, ash content, and carbon content, while the contents of hydrogen and oxygen decreased. According to the toxicity characteristic leaching procedure result, the toxicity and mobility of Cd in hydrochar were greatly reduced after pyrolysis. Notably, the regenerated biochar showed much higher Cd sorption capacity (26.05-30.24 mg/g) than the raw hydrochar (6.70 mg/g). Surface complexation with oxygen-containing functional groups was the dominant Cd sorption mechanism for hydrochar, and precipitation between Cd2+ and carbonates dominated the Cd removal by the regenerated biochars. These results illuminated that pyrolysis can be an effective technique for the harmless disposal of exhausted hydrochar sorbent and the regeneration of valuable biochar.
Collapse
Affiliation(s)
- Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Jiangtao Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xutong Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guiyue Du
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
11
|
Wu K, Wu Y, Wang B, Liu Y, Xu W, Wang A, Niu Y. Adsorption behavior and mechanism for Pb(II) and Cd(II) by silica anchored salicylaldehyde modified polyamidoamine dendrimers. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Qu J, Liu Y, Meng J, Bi F, Ma S, Zhang G, Wang Y, Tao Y, Jiang Z, Zhang Y. Pinecone-derived magnetic porous hydrochar co-activated by KHCO 3 and K 2FeO 4 for Cr(VI) and anthracene removal from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119457. [PMID: 35561795 DOI: 10.1016/j.envpol.2022.119457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, magnetic porous pinecone-derived hydrochar (MPHCMW) co-activated by KHCO3 and K2FeO4 through one-step microwave-assisted pyrolysis was innovatively synthesized for hexavalent chromium (Cr(VI)) and anthracene (ANT) removal from water. The analyses of characterization consequences and co-activation mechanisms not merely proved the high specific surface area (703.97 m2/g) and remarkable microporous structures of MPHCMW caused by the synergistic chemical activation of KHCO3 and K2FeO4, but also testified successful loading of Fe0 and Fe3O4 on MPHCMW by the process of carbothermal reduction between K2FeO4 and carbon matrix of hydrochar. The resultant MPHCMW possessed pH-dependence for Cr(VI), while adsorption for ANT was hardly impacted by the pH of solution. Moreover, the adsorption processes of MPHCMW could attain equilibrium within 60 min for Cr(VI) and 30 min for ANT with multiple kinetics, and the corresponding adsorption capacity for Cr(VI) and ANT was 128.15 and 60.70 mg/g, respectively. Additionally, the adsorption percentages of MPBCMW for Cr(VI)/ANT was maintained at 87.87/82.64% after three times of adsorption-desorption cycles. Furthermore, pore filling, complexation, electrostatic interaction, reduction and ion exchange were testified to enhance the removal of Cr(VI), while the ANT removal was achieved via π-π stacking, complexation, pore filling and hydrogen bonding force.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiao Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Guangshan Zhang
- Colleg of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China.
| |
Collapse
|
13
|
Wu Q, Wang D, Zhang J, Chen C, Ge H, Xu H, Cai D, Wu Z. Synthesis of Iron-Based Carbon Microspheres with Tobacco Waste Liquid and Waste Iron Residue for Cd(II) Removal from Water and Soil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5557-5567. [PMID: 35451849 DOI: 10.1021/acs.langmuir.2c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a novel magnetic iron-based carbon microsphere was prepared by cohydrothermal treatment of tobacco waste liquid (TWL) and waste iron residue (WIR) to form WIR@TWL. After that, WIR@TWL was coated with sodium polyacrylate (S.P.) to fabricate WIR@TWL@SP, whose removal efficiency for bivalent cadmium (Cd(II)) was studied in water and soil. As a result, WIR@TWL@SP possessed a high Cd(II) removal efficiency, which could reach 98.5% within 2 h. The adsorption process was consistent with the pseudo-second-order kinetic model because of the higher value of adjusted R2 (0.99). The thermodynamic data showed that the adsorption process was spontaneous (ΔG° < 0) and exothermic (ΔH° = 32.42 KJ·mol-1 > 0). Cd(II) removal mechanisms also include cation exchange, electrostatic attraction, hydrogen-bond interaction, and cation-π interaction. Notably, pot experiments demonstrated that WIR@TWL@SP could effectively reduce Cd absorption by plants in water and soil. Thus, this study offers an effective method for remediating Cd(II)-contaminated water and soil and may have a practical application value.
Collapse
Affiliation(s)
- Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
14
|
Wang X, Shen Y, Liu X, Ma T, Wu J, Qi G. Fly ash and H 2O 2 assisted hydrothermal carbonization for improving the nitrogen and sulfur removal from sewage sludge. CHEMOSPHERE 2022; 290:133209. [PMID: 34896175 DOI: 10.1016/j.chemosphere.2021.133209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, fly ash and hydrogen peroxide (H2O2) assisted hydrothermal carbonization (HTC) was used to improve the removal efficiency of nitrogen (N) and sulfur (S) from sewage sludge (SS). The removal rate and distribution of N and S in hydrochar were evaluated, and properties of the aqueous phase were analyzed to illustrate the N and S transformation mechanism during fly ash and H2O2 assisted HTC treatment of SS. The results suggested that during HTC process assisted by fly ash (10% of raw SS), dehydration, decarboxylation and hydrolysis of SS were strengthened due to the catalysis effect. The N and S removal were promoted marginally. For hydrochar achieved from HTC process with H2O2 addition, the N and S removal were improved slightly due to the biopolymer oxidization by ‧OH released from H2O2 decomposition. While for HTC treatment with fly ash and H2O2 supplementation, a positive synergistic effect on N and S removal was observed. The N and S removal obtained from fly ash (10% of raw SS) and H2O2 (48 g/L) assisted HTC increased to 81.71% and 62.83%, respectively, from those of 69.53% and 49.92% in control group. N and S removal mechanism analysis suggested that hydroxyl radicals (‧OH) produced by H2O2 decomposition will destroy SS structure, and the biopolymers such as polysaccharides and proteins will be decomposed to release N and S into the liquid residue. In addition, the fly ash acts as the catalyst will decrease the energy need for denification and desulfartion. Consequently, N and S removal efficiency was enhanced by fly ash and H2O2 assisted HTC treatment.
Collapse
Affiliation(s)
- Xiaobo Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400069, China
| | - Xuecheng Liu
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Tengfei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400069, China; Environmental Engineering Technology Research Center, Chongqing Academy of Ecological and Environmental Sciences, Chongqing, 401147, China
| | - Jin Wu
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecological and Environmental Sciences, Chongqing, 401147, China
| | - Gaoxiang Qi
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400069, China.
| |
Collapse
|
15
|
Zhang YN, Guo JZ, Wu C, Huan WW, Chen L, Li B. Enhanced removal of Cr(VI) by cation functionalized bamboo hydrochar. BIORESOURCE TECHNOLOGY 2022; 347:126703. [PMID: 35031437 DOI: 10.1016/j.biortech.2022.126703] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 05/16/2023]
Abstract
Chemical modification on hydrochars can significantly improve their ability of removing heavy metal ions from wastewater, but so far no research has focused on the chemical modification through free radical reaction. In this work, a cation functionalized hydrochar (CFHC) bearing - N+H2R was synthesized by grafting-polymerization of glycidyl methacrylate (GMA) onto bamboo hydrochar under initiation by benzoyl peroxide, followed by the amination with the introduced epoxy group and diethylenetriamine and a subsequent hydrochloric acid treatment. The resulted CFHC exhibited a superior removal capacity of 424.09 mg·g-1 for Cr(VI), and the highest sorption occurred at pH of 2. Combining a series of characterizations and tests, it was concluded that the sorption conformed to the pseudo-second-order and Freundlich equations, indicating a multilayer chemisorption process that mainly driven by electrostatic reaction, reduction, and surface complexation. This research proved that a free radical polymerization treatment could effectively transform hydrochars into super adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Yu-Nan Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Chunzheng Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Lin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
16
|
Qu J, Wang S, Jin L, Liu Y, Yin R, Jiang Z, Tao Y, Huang J, Zhang Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(Ⅵ) and tetracycline adsorption from water. BIORESOURCE TECHNOLOGY 2021; 340:125692. [PMID: 34358982 DOI: 10.1016/j.biortech.2021.125692] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 05/27/2023]
Abstract
Magnetic porous water hyacinth-derived biochar (MPBCMW3) was synthesized via two-step Microwave (MW)-assisted processes. Characterization results not only testified high specific surface area (2097.50 m2/g) of the MPBCMW3 assisted by MW-assisted pyrolysis, but also revealed its favorable magnetism derived from MW-assisted hydrothermal process. The MPBCMW3 possessed pH-dependent monolayer adsorption capacities of 202.61 and 202.62 mg/g for Cr(VI) and TC with quick attainments of uptake equilibrium within 150 and 200 min. Moreover, the Cr(VI) and TC uptake were substantially steady under the interference from multifarious co-existing ions with slight decline after three adsorption-desorption cycles. Furthermore, the MPBCMW3 was demonstrated to achieve excellent Cr(VI) binding primarily through complexation, electrostatic interaction, reduction and ion exchange, while presenting outstanding TC removal via pore filling, π-π stacking, hydrogen bonding force, electrostatic interaction and complexation. All these findings suggested the MPBCMW3 synthesized by MW-assisted processes as an excellent adsorbent for purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Laiyu Jin
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Junjian Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|