1
|
Ashori A, Chiani E, Shokrollahzadeh S, Sun F, Madadi M, Zhang X. Lignin-based nano-mimetic enzymes: A promising approach for wastewater remediation. Int J Biol Macromol 2025; 292:139323. [PMID: 39740722 DOI: 10.1016/j.ijbiomac.2024.139323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Lignin-based nano-mimetic enzymes have emerged as a promising approach for wastewater remediation, addressing the limitations of conventional treatment methods. This review article explores the potential of lignin, a renewable biomaterial, in developing these novel enzyme-inspired systems. The introduction highlights the rising pollution levels, stricter environmental regulations, and the need for innovative wastewater treatment technologies. The advantages of enzyme-based systems, such as high specificity, efficiency, and environmental friendliness, are discussed. The article then delves into the structure, extraction, and modification of lignin, as well as its applications in wastewater treatment. The concept of nano-mimetic enzymes and their advantages over traditional enzymes are presented, along with strategies for developing lignin-based nano-mimetic enzymes. The review examines the pollutant removal performance of these systems, covering the removal of organic and inorganic pollutants and the underlying mechanisms involved. Operational parameters, optimization strategies, and characterization techniques are also covered. The practical applications, challenges, and future research directions are discussed, emphasizing the significance, advantages, limitations, and potential benefits of lignin-based nano-mimetic enzymes for wastewater remediation. This comprehensive review highlights the promising potential of this innovative approach in addressing the pressing environmental issues related to wastewater treatment.
Collapse
Affiliation(s)
- Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Elahe Chiani
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Meysam Madadi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Guo H, Yin Q, Chen Y, Sun T, Liu N, Sun S, Wang M, Ma X. Heat-resistant boron-nitrogen doped lignin-derived adsorbent-catalyst for gaseous aromatic pollutants removal. CHEMOSPHERE 2024; 361:142493. [PMID: 38823426 DOI: 10.1016/j.chemosphere.2024.142493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Lignin-based carbon material can be utilized as carbonaceous adsorbents for the removal of toxic gaseous organic pollutants, while the poor heat-resistance limited its widely application. Here in, B-N co-doped lignin carbon (BN-C) with high thermal stability was synthesized, and the optimized BN-C (1:2) exhibited notably improved heat resistance with the decomposition temperature up to 505 °C, and excellent adsorption capacity for o-dichlorobenzene (o-DCB) (1510.0 mg/g) and toluene (947.3 mg/g), together with good cyclic stability over 10 cycles for o-dichlorobenzene. The existence of abundant hexagonal boron nitride (h-BN) with good thermal conductivity contributed to the superior heat-resistance of BN-C (1:2), and the high specific surface area (1764.5 m2/g), enriched hydroxyl functional groups and improved graphitization degree contributed to its enhanced adsorption performance. More importantly, BN-C (1:2) supported Ru could effectively remove o-DCB and toluene at wide temperature range (50-300 °C). The present work guided the development of heat-resistant lignin-derived adsorbent-catalyst for gaseous aromatic pollutants removal, which benefits both environmental protection and resource utilization.
Collapse
Affiliation(s)
- Haiwei Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Qiqi Yin
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yifeng Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Tian Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Na Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuo Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Meiyan Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
3
|
Pang Y, Lin P, Chen Z, Zhou M, Yang D, Lou H, Qiu X. Preparation, characterization, and adsorption performance of porous polyamine lignin microsphere. Int J Biol Macromol 2023; 253:127026. [PMID: 37751818 DOI: 10.1016/j.ijbiomac.2023.127026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
In this study, a porous polyamine lignin microsphere (PPALM) was prepared through the inverse suspension polymerization combined with freeze-drying, during which sodium lignosulfonate and polyetheramine (PEA) were crosslinked with epichlorohydrin (ECH) as the cross-linker. By adjusting the amount of ECH and PEA, the optimized PPALM exhibited suitable crosslinking degree, ensuring a balance of framework flexibility and rigidity, thereby facilitating the formation of abundant and fine pores. PPALM demonstrated good mechanical properties comparable to commercial sulfonated polystyrene cationic resin, with a porosity of 61.12 % and an average pore size of 283.51 nm. The saturation adsorption capacity of PPALM for Pb2+ was measured to be 156.82 mg/g, and it remained above 120 mg/g after five cycles of regeneration. Particularly, the concentration of 50 mg/L Pb2+ solution could be reduced to 0.98 mg/L after flowing through the PPALM packed bed, indicating the great potential of PPALM for application in wastewater treatment.
Collapse
Affiliation(s)
- Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Peiyi Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Zhengsong Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Li P, Yang C, Wang Y, Su W, Wei Y, Wu W. Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin. Molecules 2023; 28:molecules28083349. [PMID: 37110584 PMCID: PMC10143327 DOI: 10.3390/molecules28083349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The carbon materials derived from discarded masks and lignin are used as adsorbent to remove two types of reactive dyes present in textile wastewater: anionic and cationic. This paper introduces the results of batch experiments where Congo red (CR) and Malachite green (MG) are removed from wastewater onto the carbon material. The relationship between adsorption time, initial concentration, temperature and pH value of reactive dyes was investigated by batch experiments. It is discovered that pH 5.0-7.0 leads to the maximum effectiveness of CR and MG removal. The equilibrium adsorption capacities of CR and MG are found to be 232.02 and 352.11 mg/g, respectively. The adsorption processes of CR and MG are consistent with the Freundlich and Langmuir adsorption models, respectively. The thermodynamic processing of the adsorption data reveals the exothermic properties of the adsorption of both dyes. The results show that the dye uptake processes follow secondary kinetics. The primary adsorption mechanisms of MG and CR dyes on sulfonated discarded masks and alkaline lignin (DMAL) include pore filling, electrostatic attraction, π-π interactions and the synergistic interactions between the sulphate and the dyes. The synthesized DMAL with high adsorption efficiency is promising as an effective recyclable adsorbent for adsorbing dyes, especially MG dyes, from wastewater.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanting Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Peng Y, Guo B, Wang W, Yu P, Wu Z, Shao L, Luo W. Efficient preparation of nitrogen-doped lignin-based carbon nanotubes and the selectivity of nitrogen speciation for photothermal therapy. Int J Biol Macromol 2023; 238:124127. [PMID: 36958448 DOI: 10.1016/j.ijbiomac.2023.124127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
In this study, the lignin was pre-modified using small-molecule nitrogen-containing compounds, and then the nitrogen-doped lignin-based carbon nanotubes (L-NCNTs) were fabricated by pyrolysis using the modified lignin as raw materials. The obtained L-NCNTs were multi-walled carbon nanotubes with diameters between 10 and 80 nm. The modification of lignin had an important effect on the nitrogen morphology of L-NCNTs, and promoted the high selectivity of pyridine-N in the L-NCNTs. Defects and pyridinic-N structure were conducive to boosting photothermal properties of the L-NCNTs. The photothermal conversion efficiency of the L-NCNTs after 808 nm laser irradiation for 5 min reached 58.8 %. The L-NCNTs can be used as photothermal agents in drug delivery system to achieve mild photothermal therapy, and it is basically non-toxic to normal cells, indicating good biocompatibility. This work provides new ideas for development of lignin-based high value-added products from biomass.
Collapse
Affiliation(s)
- Yuting Peng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bosen Guo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenda Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Yu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
6
|
Mao Y, Hou L, Bai L. Fabrication of a lignin-dopped monolithic adsorbent and its properties for the extraction of hyperin from Senecionis Scandentis Hebra. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Li X, Chen Y, Chen Z, Guo H, Yang S, Ma X. The recent progress on gaseous chlorinated aromatics removal for environmental applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
El-Nemr MA, El Nemr A, Hassaan MA, Ragab S, Tedone L, De Mastro G, Pantaleo A. Microporous Activated Carbon from Pisum sativum Pods Using Various Activation Methods and Tested for Adsorption of Acid Orange 7 Dye from Water. Molecules 2022; 27:4840. [PMID: 35956788 PMCID: PMC9369958 DOI: 10.3390/molecules27154840] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
This work demonstrates the preparation of high-surface-area activated carbon (AC) from Pisum sativum pods using ZnCl2 and KOH as activating agents. The influence of CO2 and N2 gases during the carbonization process on the porosity of AC were studied. The highest specific surface area of AC was estimated at 1300 to 1500 m2/g, which presented characteristics of microporous materials. SEM micrographs revealed that chemical activation using an impregnation reagent ZnCl2 increases the porosity of the AC, which in turn leads to an increase in the surface area, and the SEM image showed that particle size diameter ranged between 48.88 and 69.95 nm. The performance of prepared AC for adsorption of Acid Orange 7 (AO7) dye was tested. The results showed that the adsorption percentage by AC (2.5 g/L) was equal to 94.76% after just 15 min, and the percentage of removal increased to be ~100% after 60 min. The maximum adsorption capacity was 473.93 mg g-1. A Langmuir model (LM) shows the best-fitted equilibrium isotherm, and the kinetic data fitted better to the pseudo-second-order and Film diffusion models. The removal of AO7 dye using AC from Pisum sativum pods was optimized using a response factor model (RSM), and the results were reported.
Collapse
Affiliation(s)
- Mohamed A. El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt;
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Lab, Alexandria 21556, Egypt; (M.A.H.); (S.R.)
| | - Mohamed A. Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Lab, Alexandria 21556, Egypt; (M.A.H.); (S.R.)
| | - Safaa Ragab
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Lab, Alexandria 21556, Egypt; (M.A.H.); (S.R.)
| | - Luigi Tedone
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy; (L.T.); (G.D.M.); (A.P.)
| | - Giuseppe De Mastro
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy; (L.T.); (G.D.M.); (A.P.)
| | - Antonio Pantaleo
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy; (L.T.); (G.D.M.); (A.P.)
| |
Collapse
|
9
|
Khan RJ, Lau CY, Guan J, Lam CH, Zhao J, Ji Y, Wang H, Xu J, Lee DJ, Leu SY. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. BIORESOURCE TECHNOLOGY 2022; 346:126419. [PMID: 34838966 DOI: 10.1016/j.biortech.2021.126419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.
Collapse
Affiliation(s)
- Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Yin Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Ji
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Yadav SK, Dhakate SR, Pratap Singh B. Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. BIORESOURCE TECHNOLOGY 2022; 344:126231. [PMID: 34755653 DOI: 10.1016/j.biortech.2021.126231] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanotube (CNT) incorporated eucalyptus derived activated carbon-based novel adsorbent is synthesized by a novel route. This adsorbent is investigated for the removal of two different dyes; methylene blue (MB) and eosin yellow (EY) from the waste water. The effect of pH, adsorbent dose, contact time and initial concentration, has been used to measure the dye removal efficiency of the adsorbent. Langmuir isotherm, Freundlich isotherm and D-R isotherm models were used to fit the experimental dye adsorption data, with the D-R model providing the best fit. The maximum adsorption efficiency of adsorbent for MB and EY removal is 49.61 and 49.15 mg/g, respectively. Reaction kinetics studies were also established to further investigate the dye adsorption mechanism. It is observed that pseudo second order model define the reaction kinetics involved in the reaction. This activated carbon adsorbent based on CNTs is shown to be highly promising for water decontamination applications.
Collapse
Affiliation(s)
- Shailesh K Yadav
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S R Dhakate
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhanu Pratap Singh
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Nasrollahzadeh M, Ghasemzadeh M, Gharoubi H, Nezafat Z. Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|