1
|
Shukla S, Khanna S, Khanna K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol Rep 2025; 14:101844. [PMID: 39811819 PMCID: PMC11730953 DOI: 10.1016/j.toxrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.3 MTs, recycling efforts remain limited, with only 18.5 MTs being recycled. Currently, out of the total plastic waste, 49.6 % is converted into energy, 27 % is recycled, and 23.5 % is recovered as material, indicating a need for better waste management practices to combat the escalating pollution levels. Research studies on micro-nanoplastics have primarily concentrated on their environmental presence and laboratory-based toxicity studies. This review critically examines the sources and detection methods for micro-nanoplastics, emphasising their toxicological effects and ecological impacts. Organisms like zebrafish and rats serve as key models for studying these particle's bioaccumulative potential, showcasing adverse effects that extend to DNA damage, oxidative stress, and cellular apoptosis. Studies reveal that micro-nanoplastics can permeate biological barriers, including the blood-brain barrier, neurological imbalance, cardiac, respiratory, and dermatological disorders. These health risks, particularly relevant for humans, underscore the urgency for broader, real-world studies beyond controlled laboratory conditions. Additionally, the review discusses innovative energy-harvesting technologies as sustainable alternatives for plastic waste utilisation, particularly valuable for energy-deficient regions. These strategies aim to simultaneously address energy demands and mitigate plastic waste. This approach aligns with global sustainability goals, providing a promising avenue for both pollution reduction and energy generation. The review calls for further research to enhance detection techniques, assess long-term environmental impacts, and explore sustainable solutions that integrate energy recovery with pollution mitigation, especially in regions most affected by both energy shortages and increased plastic waste.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar Campus, Bhubaneswar, Odisha 752050, India
| | - Sakshum Khanna
- School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
- Relx Pvt Ltd, Gurugram, Haryana 122002, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
3
|
Huang Y, Chen K, Chen Y, Chen P, Ge C, Wang X, Huang C. Distribution of microplastics and phthalic acid esters during dry anaerobic digestion of food waste and potential microbial degradation analysis. BIORESOURCE TECHNOLOGY 2024; 408:131221. [PMID: 39111396 DOI: 10.1016/j.biortech.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Food waste (FW) and its biogas residue were considered as sources of terrestrial microplastics (MPs) and phthalic acid esters (PAEs) contamination. However, there was a lack of research and understanding of the MPs and PAEs pollution problem in FW dry anaerobic digestion process (DADP). The MPs and PAEs in three stages of the DADP with the largest monomer disposal scale in China were identified. At the biogas residue extrusion stage, MPs abundance and PAEs concentration reached the highest values, which were 3.63 ± 0.45 × 103 N·kg-1 and 3.62 ± 0.72 mg·kg-1, respectively. Furthermore, there was a significant positive correlation between MPs and PAEs throughout the process (p < 0.05). Although bacteria and fungi with plastic degradation potential were present in all stages, the contamination problem of MPs and PAEs cannot be completely solved through DADP. This study provides a scientific basis for preventing and controlling the pollution of MPs and PAEs.
Collapse
Affiliation(s)
- Yuhuizi Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Kejin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yanhua Chen
- Chongqing Environment and Sanitation Group Co., Ltd., Chongqing 401122, China
| | - Pengpeng Chen
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Chunling Ge
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Xiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Mallick K, Sahu A, Dubey NK, Das AP. Harvesting marine plastic pollutants-derived renewable energy: A comprehensive review on applied energy and sustainable approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119371. [PMID: 37925980 DOI: 10.1016/j.jenvman.2023.119371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
The inevitable use of plastics in the existing standard of life makes its way to ecosystems, predominantly into the marine ecosystem. Recent research on energy recycling from marine discarded plastics through biological, chemical, and thermal processes is summarized, which degrade plastic debris and transform it into energy-efficient products. In a system-oriented approach, different boundaries like carbon efficiency, global warming potential, cumulative energy demand, and cost of the product have been evaluated. Even these technologies may successfully reduce the yearly volume of marine plastics by up to 89% while reducing greenhouse gas emissions by 30%. Conversely, recycling a ton of marine discarded plastics may save 915 cubic feet of landfill space, 6500 kWh of energy, and barrels of oil. Energy may be recovered up to 79% from waste plastics using various techniques. Up to 84% liquid fuel had been generated, with a maximum calorific power of 45 MJ/kg. It has been shown that in Asian countries, the power generation capacity of throw-away facemask wastes regularly varies from 2256 kWh/day to 18.52 million kWh/day. Hence, the conversion of marine plastics into biofuel, syngas, biochar, hydrocarbons, electricity, and value-added functional materials by various biotechnological and chemical processes like biodegradation, pyrolysis, gasification, methanolysis, and hydrolysis should be improvised as a source of alternative energy in the immediate future. Our review signifies the potential benefits of energy harvesting technologies from marine plastics pollutants to overcome the growing challenge of energy demands and provide a long-term solution to underdeveloped and developing countries as a sustainable source of energy. Endorsing current strategies to harvest energy from marine plastic wastes that enhance power generation technologies will help in building a more sustainable and greener environment that imparts a healthy and circular economy while shielding natural resources.
Collapse
Affiliation(s)
- Krishnamayee Mallick
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Aishwarya Sahu
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | | | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Li Y, Gu P, Zhang W, Sun H, Wang J, Wang L, Li B, Wang L. Effects of biodegradable and non-biodegradable microplastics on bacterial community and PAHs natural attenuation in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131001. [PMID: 36801717 DOI: 10.1016/j.jhazmat.2023.131001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as in situ straw incineration and the widespread use of agricultural film led to the accumulation of polycyclic aromatic hydrocarbons (PAHs) and microplastics (MPs) in agricultural soils. In this study, four biodegradable MPs (BPs), including polylactic acid (PLA), polybutylene succinate (PBS), poly-β-hydroxybutyric acid (PHB) and poly (butylene adipate-co-terephthalate) (PBAT) and non-biodegradable low-density polyethylene (LDPE) were selected as representative MPs. The soil microcosm incubation experiment was conducted to analyze MPs effects on PAHs decay. MPs did not influence PAHs decay significantly on day 15 but showed different effects on day 30. BPs reduced PAHs decay rate from 82.4% to 75.0%- 80.2% with the order of PLA < PHB < PBS < PBAT while LDPE increased it to 87.2%. MPs altered beta diversity and impacted the functions to different extents, interfering in PAHs biodegradation. The abundance of most PAHs-degrading genes was increased by LDPE and decreased by BPs. Meanwhile, PAHs speciation was influenced with bioavailable fraction elevated by LDPE, PLA and PBAT. The facilitating effect of LDPE on 30-d PAHs decay can be attributed to the enhancement of PAHs-degrading genes and PAHs bioavailability, while the inhibitory effects of BPs were mainly due to the response of the soil bacterial community.
Collapse
Affiliation(s)
- Yuting Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Peng Gu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wen Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Leilei Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Bing Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Guo H, Yao HY, Huang QQ, Li T, Show DY, Ling M, Yan YG, Show KY, Lee DJ. Anaerobic-anoxic-oxic biological treatment of high-strength, highly recalcitrant polyphenylene sulfide wastewater. BIORESOURCE TECHNOLOGY 2023; 371:128640. [PMID: 36681351 DOI: 10.1016/j.biortech.2023.128640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH3/L, almost 99 % of the NH3 was degraded with effluent NH3 < 5 mg/L, meeting the limit of 35 mg/L. High S2- levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.
Collapse
Affiliation(s)
- Hui Guo
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | - Hai-Yong Yao
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | | | - Ting Li
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | | | - Ming Ling
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Kuan-Yeow Show
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China; Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering & Material Science, Yuan Ze University, Taoyuan 320, Taiwan.
| |
Collapse
|
7
|
Ding MQ, Yang SS, Ding J, Zhang ZR, Zhao YL, Dai W, Sun HJ, Zhao L, Xing D, Ren N, Wu WM. Gut Microbiome Associating with Carbon and Nitrogen Metabolism during Biodegradation of Polyethene in Tenebrio larvae with Crop Residues as Co-Diets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3031-3041. [PMID: 36790312 DOI: 10.1021/acs.est.2c05009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Tsui TH, van Loosdrecht MCM, Dai Y, Tong YW. Machine learning and circular bioeconomy: Building new resource efficiency from diverse waste streams. BIORESOURCE TECHNOLOGY 2023; 369:128445. [PMID: 36473583 DOI: 10.1016/j.biortech.2022.128445] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biorefinery systems are playing pivotal roles in the technological support of resource efficiency for circular bioeconomy. Meanwhile, artificial intelligence presents great potential in handling scientific tasks of high-dimensional complexity. This review article scrutinizes the status of machine learning (ML) applications in four critical biorefinery systems (i.e. composting, fermentation, anaerobic digestion, and thermochemical conversions) as well as their advancements against traditional modeling techniques of mechanistic approach. The contents cover their algorithm selections, modeling challenges, and prospective improvements. Perspectives are sketched to further inform collective efforts on crucial aspects. The multidisciplinary interchange of modeling knowledge will enable a more progressive digital transformation of sustainability efforts in supporting sustainable development goals.
Collapse
Affiliation(s)
- To-Hung Tsui
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | | | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
9
|
Shi Y, Chai J, Xu T, Ding L, Huang M, Gan F, Pi K, Gerson AR, Yang J. Microplastics contamination associated with low-value domestic source organic solid waste: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159679. [PMID: 36283521 DOI: 10.1016/j.scitotenv.2022.159679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Waste activated sludge and food waste are two typical important domestic low-value organic solid wastes (LOSW). LOSW contains significant organic matter and water content resulting in the transboundary transfer of liquid-solid-gas and other multi-mediums, such that the complexity of microplastics (MPs) migration should be of greater concern. This article provides a review of the literature focusing on the separation and extraction methods of MPs from LOSW. The occurrence and source of MPs are discussed, and the output and impact of MPs on LOSW heat and biological treatments are summarized. The fate and co-effects of MPs and other pollutants in landfills and soils are reviewed. This review highlights the migration and transformation of MPs in domestic source LOSW, and future perspectives focused on the development of a unified extraction and analysis protocol. The objective of this review is to promote the technological development of decontamination of MPs in LOSW by sufficient understanding of the fate of MPs, their interaction with coexisting pollutants and the development of targeted preventive research strategies.
Collapse
Affiliation(s)
- Yafei Shi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Jiaqi Chai
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tao Xu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lihu Ding
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Meijie Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fangmao Gan
- Yangtze Ecology and Environment Co., Ltd., Wuhan, Hubei 430062, China
| | - Kewu Pi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania 7109, Australia
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
10
|
Initial pH Conditions Shape the Microbial Community Structure of Sewage Sludge in Batch Fermentations for the Improvement of Volatile Fatty Acid Production. Microorganisms 2022; 10:microorganisms10102073. [PMID: 36296349 PMCID: PMC9611766 DOI: 10.3390/microorganisms10102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Conversion of wastewater treatment plants into biorefineries is a sustainable alternative for obtaining valuable compounds, thus reducing pollutants and costs and protecting the environment and human health. Under specific operating conditions, microbial fermentative products of sewage sludge are volatile fatty acids (VFA) that can be precursors of polyhydroxyalkanoate thermoplastic polyesters. The role of various operating parameters in VFA production has yet to be elucidated. This study aimed to correlate the levels of VFA yields with prokaryotic microbiota structures of sewage sludge in two sets of batch fermentations with an initial pH of 8 and 10. The sewage sludge used to inoculate the batch fermentations was collected from a Sicilian WWTP located in Marineo (Italy) as a case study. Gas chromatography analysis revealed that initial pH 10 stimulated chemical oxygen demands (sCOD) and VFA yields (2020 mg COD/L) in comparison with initial pH 8. Characterization of the sewage sludge prokaryotic community structures—analyzed by next-generation sequencing of 16S rRNA gene amplicons—demonstrated that the improved yield of VFA paralleled the increased abundance of fermenting bacteria belonging to Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes phyla and, conversely, the reduced abundance of VFA-degrading strains, such as archaeal methanogens.
Collapse
|
11
|
Li Y, Li X, Wang P, Su Y, Xie B. Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste: Focusing on oxidative stress, microbial community, key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129493. [PMID: 35803187 DOI: 10.1016/j.jhazmat.2022.129493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Polystyrene (PS) microplastics (MPs) are widely existed in food waste (FW) due to the usage of plastic food-packaging. However, the effects and mechanisms of PS MPs with different sizes on anaerobic digestion (AD) performance of FW have not been comprehensively studied yet. Herein, the impacts of different PS MPs sizes (1 mm, 100 µm and 1 µm) with 20, 200 particles/g-TS were investigated. Results showed that 20 particles/g-TS PS MPs decreased cumulative methane production by 1.46-18.11 %, while the higher levels (200 particles/g-TS) significantly inhibited by 9.14-33.08 % (p < 0.05) compared with control group. The inhibiting effects were enhanced as particle size smaller. Physicochemical analysis indicated that MPs prolonged organic matter hydrolysis, weakened the volatile fatty acids metabolism and inhibited methanogenesis-related microorganisms (Synergistetes, Proteiniphilum and Methanosarcina). Small-sized MPs could induce more reactive oxygen species causing cell toxicity and suppressed key enzymes (α-glucoside, protease, acetate kinases and F420) activities, thereby restraining methane production. The analyses of acetyl-CoA synthase and methyl-coenzyme M reductase functional genes illustrated that small-sized MPs negatively affected acetoclastic methanogenesis pathways. Overall, these results provide new insights into the size-dependent effects on AD performance induced by PS MPs.
Collapse
Affiliation(s)
- Ye Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study seeks to evaluate the economic implication of a biogas digester built from composite material to ascertain its cost effectiveness. The feasibility study conducted indicates that a brick made only of fixed dome digester costs between USD 3193.99 and USD 4471.59. This high cost is attributed to the construction material, thus prompting the need to use materials of lower cost for affordability and sustainability. Hence, the digester under study was made from composite material comprising high-density polyethylene (HDPE), bricks and cement. The inlet and outlet chambers were built using bricks and cement, while the digestion chamber was made from HDPE material. From the economic analysis conducted, the total initial investment cost of the biogas digester was reported to be USD 1623.41 with an internal rate of return (IRR) of 8.5%, discount payback period (DPP) of 2 years and net present value (NPV) of USD 1783.10. The findings equally revealed that the estimated quantity of biogas could replace 33.2% of liquefied petroleum gas (LPG) cooking gas. Moreover, the biogas daily yield of 1.57 m3 generates approximately 9.42 kWh of electricity, which costs about USD 1.54. Thus, the study recommends the use of composite material of plastics and bricks in constructing the biogas digester, as it is cost effective and sustainable.
Collapse
|
13
|
Zhou Y, Kumar V, Harirchi S, Vigneswaran VS, Rajendran K, Sharma P, Wah Tong Y, Binod P, Sindhu R, Sarsaiya S, Balakrishnan D, Mofijur M, Zhang Z, Taherzadeh MJ, Kumar Awasthi M. Recovery of value-added products from biowaste: A review. BIORESOURCE TECHNOLOGY 2022; 360:127565. [PMID: 35788392 DOI: 10.1016/j.biortech.2022.127565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - V S Vigneswaran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - M Mofijur
- Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|