1
|
Kim HG, Yu SI, Shin SG, Cho KH. Graph-based deep learning for predictions on changes in microbiomes and biogas production in anaerobic digestion systems. WATER RESEARCH 2025; 274:123144. [PMID: 39826399 DOI: 10.1016/j.watres.2025.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimising AD processes are challenging because of the intricate interactions within microbial communities and the impact of volatile fatty acids (VFAs) on biogas production. To address these challenges, this study proposes the application of graph convolutional networks (GCNs) to comprehensively model AD processes. GCN models were developed to predict microbial dynamics and biogas production by integrating network analyses of high-throughput sequencing data and VFA inhibition effects. The models were trained based on the responses of anaerobic digesters to organic loading rate shock, starvation, and bioaugmentation for 281 d under various feeding conditions. Shifts in microbial community composition during AD stages and feeding conditions were successfully identified using next-generation sequencing tools. Graph topological features indicated a significant coupling between VFAs and microbial families, and the hydrogenotrophic archaeal families were most frequently connected to other families or residual acids. The GCN accurately predicted microbial abundances and gas production rates, achieving a mean squared error of 0.11 and 0.01 and a coefficient of determination of 0.72 and 0.87 for the testing dataset. These results provide valuable insights into the effects of starvation and bioaugmentation on the microbiome by utilising GCNs to model anaerobic treatment processes, predict microbial dynamics, and assess reactor productivity. Our study suggests a new modelling framework for understanding and improving AD systems by considering microbial interaction networks in relation to chemical parameter information at relevant operating scales.
Collapse
Affiliation(s)
- Hyo Gyeom Kim
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Korea
| | - Sung Il Yu
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, Gyeongsang National University, Gyeongnam 52828, Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
2
|
Qiao Z, Chen Z, Gong H, Guo X, Yu H, Chen L. Enhancement of anaerobic digestion by adding elemental sulfur. BIORESOURCE TECHNOLOGY 2025; 416:131820. [PMID: 39547299 DOI: 10.1016/j.biortech.2024.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
In this study, a new approach to enhance methane (CH4) production from organic substrates in anaerobic digestion (AD) has been discovered. That is, the addition of elemental sulfur (S0) particles into the AD system promotes the synergistic growth of elemental sulfur disproportionation bacteria, acidogenic bacteria and methanogenic archaea, thus facilitating hydrolysis, acidogenesis and methanogenesis. The efficacy of this AD enhancement pathway was confirmed in AD experiments with glucose as a model organic substrate. The results demonstrated that CH4 production in the AD system increased considerably with S0 dosages ranging from 20 mg/L to 300 mg/L. Two gas production peaks appeared at dosages of 20 mg/L and 180 mg/L, where the total CH4 production increased by 2.1 times and 2.5 times, respectively compared with the control group. However, inhibitory effect was observed for S0 dosages above 300 mg/L. The chemical states of S, the microbial community and the abundance of key functional enzymes in the AD system were analyzed. The results showed that S0 addition increased the relative abundance of Dethiobacteraceae, Caldatribacterium, Anaerolineaceae, Methanobacterium and Methanosaeta and considerably increased the abundance of key functional enzymes, such as dehydrogenase, D-glucosidic glucosidase, pyruvate synthase and acetyl-CoA deacetylase. The enrichment of these microorganisms and functional enzymes was strongly positively correlated with the production of volatile fatty acids and CH4, demonstrating that S0 addition effectively enhances methanogenesis during AD.
Collapse
Affiliation(s)
- Zihao Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Huijuan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; Center of Materials Analysis, Nanjing University, 210093 Nanjing, PR China.
| | - Xiaofeng Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiqiang Yu
- Center of Materials Analysis, Nanjing University, 210093 Nanjing, PR China
| | - Lu Chen
- Center of Materials Analysis, Nanjing University, 210093 Nanjing, PR China
| |
Collapse
|
3
|
Gao Y, Heng S, Wang J, Liu Z, Liu Y, Chen B, Han Y, Li W, Lu X, Zhen G. Bioelectrochemically altering microbial ecology in upflow anaerobic sludge blanket to enhance methanogenesis fed with high-sulfate methanolic wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131026. [PMID: 38917910 DOI: 10.1016/j.biortech.2024.131026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
A bioelectrochemical upflow anaerobic sludge blanket (BE-UASB) was constructed and compared with the traditional UASB to investigate the role of bioelectrocatalysis in modulating methanogenesis and sulfidogensis involved within anaerobic treatment of high-sulfate methanolic wastewater (COD/SO42- ratio ≤ 2). Methane production rate for BE-UASB was 1.4 times higher than that of the single UASB, while SO42- removal stabilized at 16.7%. Bioelectrocatalysis selectively enriched key functional anaerobes and stimulated the secretion of extracellular polymeric substances, especially humic acids favoring electron transfer, thereby accelerating the electroactive biofilms development of electrodes. Methanomethylovorans was the dominant genus (35%) to directly convert methanol to CH4. Methanobacterium as CO2 electroreduction methane-producing archaea appeared only on electrodes. Acetobacterium exhibited anode-dependence, which provided acetate for sulfate-reducing bacteria (norank Syntrophobacteraceae and Desulfomicrobium) through synergistic coexistence. This study confirmed that BE-UASB regulated the microbial ecology to achieve efficient removal and energy recovery of high-sulfate methanolic wastewater.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Shiliang Heng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yisheng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
4
|
Wang X, Dürr V, Guenne A, Mazéas L, Chapleur O. Generic role of zeolite in enhancing anaerobic digestion and mitigating diverse inhibitions: Insights from degradation performance and microbial characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120676. [PMID: 38520850 DOI: 10.1016/j.jenvman.2024.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Zeolite was shown to mitigate anaerobic digestion (AD) inhibition caused by several inhibitors such as long-chain fatty acids, ammonia, and phenolic compounds. In this paper, we verified the genericity of zeolite's mitigating effect against other types of inhibitors found in AD such as salts, antibiotics, and pesticides. The impacts of inhibitors and zeolite were assessed on AD performance and microbial dynamics. While sodium chloride and erythromycin reduced methane production rates by 34% and 32%, zeolite mitigated the inhibition and increased methane production rates by 72% and 75%, respectively, compared to conditions without zeolite in the presence of these two inhibitors. Noticeably, zeolite also enhanced methane production rate by 51% in the uninhibited control condition. Microbial community structure was analyzed at two representative dates corresponding to the hydrolysis/fermentation and methanogenesis stages through 16S rRNA gene sequencing. The microbial characteristics were further evidenced with common components analysis. Results revealed that sodium chloride and erythromycin inhibited AD by targeting distinct microbial populations, with more pronounced inhibitory effects during hydrolysis and VFAs degradation phases, respectively. Zeolite exhibited a generic effect on microbial populations in different degradation stages across all experimental conditions, ultimately contributing to the enhanced AD performance and mitigation of different inhibitions. Typically, hydrolytic and fermentative bacteria such as Cellulosilyticum, Sedimentibacter, and Clostridium sensu stricto 17, VFAs degraders such as Mesotoga, Syntrophomonas, and Syntrophobacter, and methanogens including Methanobacterium, Methanoculleus, and Methanosarcina were strongly favored by the presence of zeolite. These findings highlighted the promising use of zeolite in AD processes for inhibition mitigation in general.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Vincent Dürr
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| |
Collapse
|
5
|
Jin HY, Yang L, Ren YX, Tang CC, Zhou AJ, Liu W, Li Z, Wang A, He ZW. Insights into the roles and mechanisms of a green-prepared magnetic biochar in anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165170. [PMID: 37379930 DOI: 10.1016/j.scitotenv.2023.165170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Methane is one of the most promising renewable energies to alleviate energy crisis or replace fossil fuels, which can be recovered from anaerobic digestion of bio-wastes. However, the engineering application of anaerobic digestion is always hindered by low methane yield and production rate. This study revealed the roles and mechanisms of a green-prepared magnetic biochar (MBC) in promoting methane production performance from waste activated sludge. Results showed that the methane yield reached 208.7 mL/g volatile suspended solids with MBC additive dosage of 1 g/L, increasing by 22.1 % compared to that in control. Mechanism analysis demonstrated that MBC could promote hydrolysis, acidification, and methanogenesis stages. This was because the properties of biochar were upgraded by loading nano-magnetite, such as specific surface area, surface active sites, and surface functional groups, which made MBC have greater potential to mediate electron transfer. Correspondingly, the activity of α-glucosidase and protease respectively increased by 41.7 % and 50.0 %, and then the hydrolysis performances of polysaccharides and proteins were improved. Also, MBC improved the secretion of electroactive substances like humic substances and cytochrome C, which could promote extracellular electron transfer. Furthermore, Clostridium and Methanosarcina, as well-known electroactive microbes, were selectively enriched. The direct interspecies electron transfer between them was established via MBC. This study provided some scientific evidences to comprehensively understand the roles of MBC in anaerobic digestion, with important implications for achieving resource recovery and sludge stabilization.
Collapse
Affiliation(s)
- Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Mills S, Yen Nguyen TP, Ijaz UZ, Lens PNL. Process stability in expanded granular sludge bed bioreactors enhances resistance to organic load shocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118271. [PMID: 37269726 DOI: 10.1016/j.jenvman.2023.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Environmental perturbations such as changes in organic loading rate (OLR) can have deleterious effects on the anaerobic digestion process, leading to VFA accumulation and process failure. However, the operational history of a reactor, such as prior exposure to VFA build up, can impact a reactor's resistance to shock loads. In the present study, the effects of long term (>100 days) bioreactor (un)stability on OLR shock resistance were assessed. Three 4 L EGSB bioreactors were subjected to varying levels of process stability. Operational conditions such as OLR, temperature and pH were maintained stable in R1; R2 was subjected to a series of minor OLR perturbations and R3 was subjected to a series of non-OLR perturbations, including ammonium, temperature, pH and sulfide. The effect of these different operational histories on each reactor's resistance to a sudden 8-fold increase in OLR were assessed by monitoring COD removal efficiency and biogas production. The microbial communities of each reactor were monitored using 16S rRNA gene sequencing to understand the relationship between microbial diversity and reactor stability. It was determined that the stable (un-perturbed) reactor performed best in terms of its resistance to a large OLR shock, despite its lower microbial community diversity.
Collapse
Affiliation(s)
- Simon Mills
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
| | - Thi Phi Yen Nguyen
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, United Kingdom; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Piet N L Lens
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
7
|
Liu W, Song X, Ding X, Xia R, Lin X, Li G, Nghiem LD, Luo W. Antibiotic removal from swine farming wastewater by anaerobic membrane bioreactor: Role of hydraulic retention time. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Kim M, Rhee C, Wells M, Shin J, Lee J, Shin SG. Key players in syntrophic propionate oxidation revealed by metagenome-assembled genomes from anaerobic digesters bioaugmented with propionic acid enriched microbial consortia. Front Microbiol 2022; 13:968416. [DOI: 10.3389/fmicb.2022.968416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Propionic acid (HPr) is frequently accumulated in anaerobic digesters due to its thermodynamically unfavorable degradation reaction. Here, we identify key players in HPr oxidation and organic overloading recovery from metagenome-assembled genomes (MAGs) recovered from anaerobic digesters inoculated with HPr-enriched microbial consortia before initiating organic overloading. Two independent HPr-enrichment cultures commonly selected two uncultured microorganisms represented with high relative abundance: Methanoculleus sp002497965 and JABUEY01 sp013314815 (a member of the Syntrophobacteraceae family). The relative abundance of JABUEY01 sp013314815 was 60 times higher in bioaugmented bioreactors compared to their unaugmented counterparts after recovery from organic overloading. Genomic analysis of JABUEY01 sp013314815 revealed its metabolic potential for syntrophic propionate degradation when partnered with hydrogenotrophic methanogens (e.g., Methanoculleus sp002497965) via the methylmalonyl-CoA pathway. Our results identified at least two key species that are responsible for efficient propionate removal and demonstrate their potential applications as microbial cocktails for stable AD operation.
Collapse
|
9
|
Zou J, Nie E, Lü F, Peng W, Zhang H, He P. Screening of early warning indicators for full-scale dry anaerobic digestion of household kitchen waste. ENVIRONMENTAL RESEARCH 2022; 214:114136. [PMID: 35995226 DOI: 10.1016/j.envres.2022.114136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Process monitoring is an essential measure to achieve efficient and stable performance in anaerobic digestion, thus requiring identification of effective early warning indicators. However, the application of early warning indicators to full-scale dry anaerobic engineering biogas plant still remains elusive. This study evaluated the effectiveness of common early warning indicators (including CH4, CO2, H2S, volatile fatty acids (VFAs), alkalinity (ALK), total ammonia concentration (TAN) and free ammonia concentration (FAN)) in monitoring the instability of anaerobic digestion process at a practical engineering plant. The results showed that the individual indicators could not provide a sufficient early warning time before the digester fell into failure collapse. In comparison, the coupling indicators (the ratio of CH4/CO2, CH4/pH, and CH4/H2S) had sensitive response to perturbation, which could regard as a potential early warning indicator, with the early warning time of 6, 7 and 10 days, respectively. Moreover, the VFA/ALK could be used as auxiliary indicators due to the limitation of complex detection methods. In addition, the result also indicated that the application of some warning indicators needs to be further verified, when transferring the result of laboratory scale to the practice application scenarios. This study provides insight into the stable operation of dry anaerobic engineering.
Collapse
Affiliation(s)
- Jinlin Zou
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, PR China
| | - Erqi Nie
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Liu W, Xia R, Ding X, Cui W, Li T, Li G, Luo W. Impacts of nano-zero-valent iron on antibiotic removal by anaerobic membrane bioreactor for swine wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Shin SG, Kim SI, Hwang S. Startup of Demo-Scale Anaerobic Digestion Plant Treating Food Waste Leachate: Process Instability and Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116903. [PMID: 35682486 PMCID: PMC9180266 DOI: 10.3390/ijerph19116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023]
Abstract
A demo-scale (600 m3 working volume) anaerobic digester treating food waste leachate was monitored during its startup period. The operation strategy was adjusted twice (i.e., three distinct phases) during the operation to recover the process from instability. During the first phase, the organic loading rate (OLR) > 2.7 kg chemical oxygen demand (COD)/m3∙day corresponded to volatile fatty acid (VFA) accumulation along with a decreasing pH, resulting in the drop in biogas yield to 0.43 ± 0.9 m3/kg CODin. During phase 2, fast recovery of this process was aimed at using a sequencing batch operation. One batch cycle (5 to 2 days) consisted of the combined drawing and feeding step (5 h), the reacting step (91 to 17 h), and the settling step (24 h). The duration of the reacting step was determined for each cycle such that (1) the biogas production ceased before the cycle end and (2) the residual VFA concentration was < 1 g/L. In total, 11 cycles were operated with a gradual increase in biogas yield to 0.55 m3/kg CODin with the absence of any sign of system disturbance. After phase 2, the digester was fed at the designed OLR of 4.1 ± 0.3 kg COD/m3∙day. The biogas yield was elevated to 0.58 ± 0.2 m3/kg CODin during phase 3 with the residual VFA concentration maintained at 2.2 ± 0.6 g/L. Methanogen populations, as determined by real-time PCR, did not change significantly throughout the period. These results imply that the adaptation of this process to the OLR of ca. 4 kg COD/m3∙day was not due to the increase in methanogen population but due to the elevation of its activity. Overall, this study suggests that the sequencing batch operation with adjustable cycle duration can be one successful recovery strategy for biogas plants under system instability.
Collapse
Affiliation(s)
- Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52828, Korea;
- Department of Energy System Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52828, Korea
| | - Su In Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Korea;
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Korea;
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence:
| |
Collapse
|