1
|
Li M, Zhao X, Wu K, Liang C, Liu J, Yang H, Wang C, Yang B, Yin F, Zhang W. Spiral-Pipe Gas Anaerobic Digester. ACS OMEGA 2024; 9:23202-23208. [PMID: 38854509 PMCID: PMC11154718 DOI: 10.1021/acsomega.3c08872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 06/11/2024]
Abstract
The reduction of carbon dioxide to methane using hydrogen is an important process in biogas production. However, designing gas anaerobic digesters (GADs) based on this reaction presents several challenges. In this study, we developed an innovative spiral-pipe gas anaerobic digester (SGAD) to increase the displacement distance between the bubbles, thus prolonging the gas retention time and facilitating the reduction of CO2 to CH4 via H2. The process was successfully demonstrated by using a CO2/H2 ratio of 1:3 and a gas-feeding rate of 3.9 L Lr -1 d-1. During the experiment, more than 98% of the CO2 and 96% of the H2 were consumed, resulting in biogas containing ca. 86-96% CH4. Additionally, we applied our proposed evaluation methodology for assessing GAD performance to evaluate the performance of the SGAD. This methodology serves as a reference for evaluating and designing GAD systems. The innovative design of the SGAD and the corresponding evaluation methodology offer new insights into the design of reactors.
Collapse
Affiliation(s)
- Minghao Li
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Xingling Zhao
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Kai Wu
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Chengyue Liang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Jing Liu
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Hong Yang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Changmei Wang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
| | - Bin Yang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| | - Fang Yin
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| | - Wudi Zhang
- Yunnan
Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Research Center of Biogas Technology and Engineering, School of Energy
and Environment Science, Yunnan Normal University, 768 Jvxian Street, Kunming, Yunnan 650500, PR China
- Yunnan
Yunyu Technology Co., LTD, Kunming 650117, PR China
| |
Collapse
|
2
|
Nasershariat M, Pishvaie MR, Boozarjomehry RB, Waldherr S. A dynamic model of growth phase of bio-conversion of methane to polyhydroxybutyrate using dynamic flux balance analysis. Bioprocess Biosyst Eng 2024; 47:463-474. [PMID: 38492006 DOI: 10.1007/s00449-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/06/2024] [Indexed: 03/18/2024]
Abstract
Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost. This study addresses the computational modeling of the growth phase reactor of the process of polyhydroxybutyrate production. The model was used for investigating the effect of gas recycling and inlet gas retention time on the reactor performance. The model was run by the use of a genome-scale metabolic network of Methylocystis hirsuta in a dynamic flux balance analysis framework. The reactor has been modeled for two separate feeding scenarios: a pure methane feed and a biogas feed. The mass transfer coefficient parameter was predicted as a function of superficial gas velocities by the regression of data from published experiments. The results show an increase of removal efficiency by 38% and biomass concentration by 2.8 g/L with the increase of gas recycle ratio from 0 to 30 at the empty bed residence time of 60 min .
Collapse
Affiliation(s)
- Mohadeseh Nasershariat
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahmoud Reza Pishvaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | | | - Steffen Waldherr
- Faculty of Life Sciences, Division of Molecular Systems Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
3
|
Hoffstadt K, Nikolausz M, Krafft S, Bonatelli ML, Kumar V, Harms H, Kuperjans I. Optimization of the Ex Situ Biomethanation of Hydrogen and Carbon Dioxide in a Novel Meandering Plug Flow Reactor: Start-Up Phase and Flexible Operation. Bioengineering (Basel) 2024; 11:165. [PMID: 38391651 PMCID: PMC10886298 DOI: 10.3390/bioengineering11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
With the increasing use of renewable energy resources for the power grid, the need for long-term storage technologies, such as power-to-gas systems, is growing. Biomethanation provides the opportunity to store energy in the form of the natural gas-equivalent biomethane. This study investigates a novel plug flow reactor that employs a helical static mixer for the biological methanation of hydrogen and carbon dioxide. In tests, the reactor achieved an average methane production rate of 2.5 LCH4LR∗d (methane production [LCH4] per liter of reactor volume [LR] per day [d]) with a maximum methane content of 94%. It demonstrated good flexibilization properties, as repeated 12 h downtimes did not negatively impact the process. The genera Methanothermobacter and Methanobacterium were predominant during the initial phase, along with volatile organic acid-producing, hydrogenotrophic, and proteolytic bacteria. The average ratio of volatile organic acid to total inorganic carbon increased to 0.52 ± 0.04, while the pH remained stable at an average of pH 8.1 ± 0.25 from day 32 to 98, spanning stable and flexible operation modes. This study contributes to the development of efficient flexible biological methanation systems for sustainable energy storage and management.
Collapse
Affiliation(s)
- Kevin Hoffstadt
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Marcell Nikolausz
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Simone Krafft
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Maria Letícia Bonatelli
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Vivekanantha Kumar
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Hauke Harms
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Isabel Kuperjans
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| |
Collapse
|
4
|
Sharma V, Sharma D, Tsai ML, Ortizo RGG, Yadav A, Nargotra P, Chen CW, Sun PP, Dong CD. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. BIORESOURCE TECHNOLOGY 2023; 390:129829. [PMID: 37839650 DOI: 10.1016/j.biortech.2023.129829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Diksha Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Rhessa Grace Guanga Ortizo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Thapa A, Jo H, Han U, Cho SK. Ex-situ biomethanation for CO 2 valorization: State of the art, recent advances, challenges, and future prospective. Biotechnol Adv 2023; 68:108218. [PMID: 37481094 DOI: 10.1016/j.biotechadv.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ex-situ biomethanation is an emerging technology that facilitates the use of surplus renewable electricity and valorizes carbon dioxide (CO2) for biomethane production by hydrogenotrophic methanogens. This review offers an up-to-date overview of the current state of ex-situ biomethanation and thoroughly analyzes key operational parameters affecting hydrogen (H2) gas-liquid mass transfer and biomethanation performance, along with an in-depth discussion of the technical challenges. To the best of our knowledge, this is the first review article to discuss microbial community structure in liquid and biofilm phases and their responses after exposure to H2 starvation during ex-situ biomethanation. In addition, future research in areas such as reactor configuration and optimization of operational parameters for improving the H2 mass transfer rate, inhibiting opportunistic homoacetogens, integration of membrane technology, and use of conductive packing material is recommended to overcome challenges and improve the efficiency of ex-situ biomethanation. Furthermore, this review presents a techno-economic analysis for the future development and facilitation of industrial implementation. The insights presented in this review will offer useful information to identify state-of-the-art research trends and realize the full potential of this emerging technology for CO2 utilization and biomethane production.
Collapse
Affiliation(s)
- Ajay Thapa
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hongmok Jo
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Chatzis A, Orellana E, Gaspari M, Kontogiannopoulos K, Treu L, Zouboulis A, Kougias PG. Comparative study on packing materials for improved biological methanation in trickle Bed reactors. BIORESOURCE TECHNOLOGY 2023; 385:129456. [PMID: 37406828 DOI: 10.1016/j.biortech.2023.129456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Packing materials improve biological methanation efficiency in Trickle Bed Reactors. The present study, which lies in the field of energy production and biotechnology, entailed the evaluation of commercial pelletized activated carbon and Raschig rings as packing materials. The evaluation focused on monitoring process indicators and examining the composition of the microbial community. Activated carbon resulted in enhanced methane purity, achieving a two-fold higher methane percentage than Raschig rings, maintaining a stable pH level within a range of 7-8 and reducing gas retention time from 6 h to 90 min. Additionally, the digestate derived from biogas plant was found to be a sufficient nutrient source for the process. Fermentative species with genes for β-oxidation, such as Amaricoccus sp. and Caloramator australicus could explain the production of hexanoic and valerate acids during reactor operation. Based on the physical properties of packing materials, the efficiency of biological methanation could be maximized.
Collapse
Affiliation(s)
- Alexandros Chatzis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi-Thessaloniki 57001, Greece
| | - Esteban Orellana
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Maria Gaspari
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi-Thessaloniki 57001, Greece
| | | | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi-Thessaloniki 57001, Greece.
| |
Collapse
|
7
|
Ale Enriquez F, Ahring BK. Strategies to overcome mass transfer limitations of hydrogen during anaerobic gaseous fermentations: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 377:128948. [PMID: 36963702 DOI: 10.1016/j.biortech.2023.128948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Fermentation of gaseous substrates such as carbon dioxide (CO2) has emerged as a sustainable approach for transforming greenhouse gas emissions into renewable fuels and biochemicals. CO2 fermentations are catalyzed by hydrogenotrophic methanogens and homoacetogens, these anaerobic microorganisms selectively reduce CO2 using hydrogen (H2) as electron donor. However, H2 possesses low solubility in liquid media leading to slow mass transport, limiting the reaction rates of CO2 reduction. Solving the problems of mass transport of H2 could boost the advance of technologies for valorizing industrial CO2-rich streams, like biogas or syngas. The application could further be extended to combustion flue gases or even atmospheric CO2. In this work, an overview of strategies for overcoming H2 mass transport limitations during methanogenic and acetogenic fermentation of H2 and CO2 is presented. The potential for using these strategies in future full-scale facilities and the knowledge gaps for these applications are discussed in detail.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
8
|
Ngu V, Fletcher DF, Kavanagh JM, Rafrafi Y, Dumas C, Morchain J, Cockx A. H2 mass transfer – a key factor for efficient biological methanation: Comparison between pilot-scale experimental data, 1D and CFD models. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Sun ZF, Zhao L, Wu KK, Wang ZH, Wu JT, Chen C, Yang SS, Wang AJ, Ren NQ. Overview of recent progress in exogenous hydrogen supply biogas upgrading and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157824. [PMID: 35931172 DOI: 10.1016/j.scitotenv.2022.157824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of renewable and sustainable energy, biogas upgrading for producing high-quality biomethane as an alternative to natural gas has attracted worldwide attention. This paper comprehensively reviews the current state of biogas upgrading technologies. The advances in physicochemical, photosynthetic autotrophic, and chemical autotrophic biogas upgrading technologies are briefly described with particular attention to the key challenges. New chemical autotrophic biogas upgrading strategies, such as direct and indirect exogenous hydrogen supply, for overcoming barriers to biogas upgrading and realizing highly efficient bioconversion of carbon dioxide are summarized. For each approach to exogenous hydrogen supply for biogas upgrading, the key findings and technical limitations are summarized and critically analyzed. Finally, future developments are also discussed to provide a reference for the development of biogas upgrading technology that can address the global energy crisis and climate change issues related to the application of biogas.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kai-Kai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Ebrahimian F, De Bernardini N, Tsapekos P, Treu L, Zhu X, Campanaro S, Karimi K, Angelidaki I. Effect of pressure on biomethanation process and spatial stratification of microbial communities in trickle bed reactors under decreasing gas retention time. BIORESOURCE TECHNOLOGY 2022; 361:127701. [PMID: 35905873 DOI: 10.1016/j.biortech.2022.127701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The current study investigated the effect of elevating gas pressure on biomethanation in trickle-bed reactors (TBRs). The increased pressure led to successful biomethanation (CH4 > 90 %) at a gas retention time (GRT) of 21 min, due to the improved transfer rates of H2 and CO2. On the contrary, the non-pressurized TBR performance was reduced at GRTs shorter than 40 min. Metagenomic analysis revealed that the microbial populations collected from the lower and middle parts of the reactor under the same GRT were more homogeneous compared with those developed in the upper layer. Comparison with previous experiments suggest that microbial stratification is mainly driven by the nutrient provision strategy. Methanobacterium species was the most dominant methanogen and it was mainly associated with the bottom and middle parts of TBRs. Overall, the increased pressure did not affect markedly the microbial composition, while the GRT was the most important parameter shaping the microbiomes.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nicola De Bernardini
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Xinyu Zhu
- School of Engineering, Westlake University, No.18, Shilongshan Road, Cloud Town, Xihu District, Hangzhou, Zhejiang Province, China
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
11
|
Ghofrani-Isfahani P, Tsapekos P, Peprah M, Kougias P, Zervas A, Zhu X, Yang Z, Jacobsen CS, Angelidaki I. Ex-situ biogas upgrading in thermophilic trickle bed reactors packed with micro-porous packing materials. CHEMOSPHERE 2022; 296:133987. [PMID: 35176296 DOI: 10.1016/j.chemosphere.2022.133987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Two thermophilic trickle bed reactors (TBRs) were packed with different packing densities with polyurethane foam (PUF) and their performance under different retention times were evaluated during ex-situ biogas upgrading process. The results showed that the TBR more tightly packed i.e. containing more layers of PUF achieved higher H2 utilization efficiency (>99%) and thus, higher methane content (>95%) in the output gas. The tightly packed micro-porous PUF enhanced biofilm immobilization, gas-liquid mass transfer and biomethanation efficiency. Moreover, applying a continuous high-rate nutrient trickling could lead to liquid overflow resulting in formation of non-homogenous biofilm and severe deduction of biomethanation efficiency. High-throughput 16S rRNA gene sequencing revealed that the liquid media were predominated by hydrogenotrophic methanogens. Moreover, members of Peptococcaceae family and uncultured members of Clostridia class were identified as the most abundant species in the biofilm. The proliferation of hydrogenotrophic methanogens together with syntrophic bacteria showed that H2 addition resulted in altering the microbial community in biogas upgrading process.
Collapse
Affiliation(s)
- Parisa Ghofrani-Isfahani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark.
| | - Maria Peprah
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, Thessaloniki, 57001, Greece
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Carsten S Jacobsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| |
Collapse
|
12
|
Antukh T, Lee I, Joo S, Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front Bioeng Biotechnol 2022; 10:833482. [PMID: 35557857 PMCID: PMC9085624 DOI: 10.3389/fbioe.2022.833482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Biogas produced from anaerobic digestion consists of 55–65% methane and 35–45% carbon dioxide, with an additional 1–2% of other impurities. To utilize biogas as renewable energy, a process called biogas upgrading is required. Biogas upgrading is the separation of methane from carbon dioxide and other impurities, and is performed to increase CH4 content to more than 95%, allowing heat to be secured at the natural gas level. The profitability of existing biogas technologies strongly depends on operation and maintenance costs. Conventional biogas upgrading technologies have many issues, such as unstable high-purity methane generation and high energy consumption. However, hydrogenotrophs-based biological biogas upgrading offers an advantage of converting CO2 in biogas directly into CH4 without additional processes. Thus, biological upgrading through applying hydrogenotrophic methanogens for the biological conversion of CO2 and H2 to CH4 receives growing attention due to its simplicity and high technological potential. This review analyzes the recent advance of hydrogenotrophs-based biomethanation processes, addressing their potential impact on public acceptance of biogas plants for the promotion of biogas production.
Collapse
Affiliation(s)
| | | | - Sunghee Joo
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| | - Hyunook Kim
- *Correspondence: Sunghee Joo, ; Hyunook Kim,
| |
Collapse
|