1
|
Ortega Díaz Y, Gómez Luna L, Fung Boix Y, Silveira Font Y, Prinsen E, Huybrechts M, Vandamme D, Cuypers A. Biopriming of Cucumis sativus L. Seeds with a Consortium of Nitrofixing Cyanobacteria Treated with Static Magnetic Field. PLANTS (BASEL, SWITZERLAND) 2025; 14:628. [PMID: 40006887 PMCID: PMC11859910 DOI: 10.3390/plants14040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The growing demand for sustainable agriculture necessitates innovative strategies to enhance crop productivity while minimizing environmental impact. This study explores the biopriming potential of Cucumis sativus L. seeds using extracts derived from a consortium of nitrofixing cyanobacteria Nostoc commune, Calothrix sp., and Aphanothece minutissima subjected to static magnetic field (SMF) treatments. The cyanobacterial consortia were exposed to SMF at varying magnetic inductions (40-50 mT and 100-200 mT), followed by extract preparation and application as biopriming agents. Results demonstrated significant improvements in key seedling growth parameters, including root and stem length, vigor index I, and fresh biomass. The consortium treated with 40-50 mT SMF showed the most pronounced growth-stimulating activity, suggesting enhanced bioactive compound production under this treatment that might be related to auxin biosynthesis. Biopriming with cyanobacterial extracts maintained a balanced nutritional uptake and plant health, as indicated by stable fresh weight dry weight ratios. These findings highlight the potential of SMF-enhanced cyanobacterial consortia as biopriming agents for horticultural crops. Future research should elucidate the underlying modes of action and optimize conditions for broader crop applications.
Collapse
Affiliation(s)
- Yadenis Ortega Díaz
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Liliana Gómez Luna
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Yilan Fung Boix
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Yadira Silveira Font
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Dries Vandamme
- Analytical and Circular Chemistry, Center for Enveriomental Sciences (CMK), Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| |
Collapse
|
2
|
Lawrence J, Oliva A, Papirio S, Murphy JD, Lens PNL. Improving hydrogen and volatile fatty acids production through pretreatment of spent coffee grounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 192:1-11. [PMID: 39577043 DOI: 10.1016/j.wasman.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
Consumption of coffee produces large amounts of waste in the form of spent coffee grounds (SCG), a lignocellulosic material rich in carbohydrates, proteins, and polyphenols. This abundant feedstock is promising in terms of biofuels and value-added product generation. This study investigated the impact of pretreatments, such as alkaline (NaOH), ultrasound, and static magnetic field, on SCG bioconversion in terms of biomolecule release, H2 potential and volatile fatty acids production. Following treatment, the slurry (solid and liquid fraction mixture) was utilised in anaerobic fermentation tests at varying volatile solid (VS) concentrations (23.3 and 46.7 g VS/L). The highest H2 production range, 25 - 30 mL H2/g VS, was obtained using the alkaline-pretreated SCG slurry at 23.3 g VS/L. Nevertheless, inhibition of H2 production was observed when utilising the alkaline-pretreated slurry at 46.7 g VS/L owing to the excessive use of NaOH for pretreatment and chemicals to adjust the initial pH. In contrast, increasing the VS concentration had a positive impact on volatile fatty acids accumulation, with acetic (HAc) and caproic acid being dominant. Ultrasound-pretreated SCG achieved 3260.0 mg HAceq/L at a concentration of 46.7 g VS/L.
Collapse
Affiliation(s)
- James Lawrence
- University of Galway, University Road, H91 TK33, Galway, Ireland; Science Foundation Ireland MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Armando Oliva
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Jerry D Murphy
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Science Foundation Ireland MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Piet N L Lens
- University of Galway, University Road, H91 TK33, Galway, Ireland; Science Foundation Ireland MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Yan Y, Zhao Y, Lou Y, Zhao Y, Shang H, Yang Y, Wang D, Zhang B. Constructing core-shell phosphorus doped MnCo 2O 4.5@ZIS for efficient photocatalytic hydrogen production from water splitting. J Colloid Interface Sci 2024; 680:965-975. [PMID: 39549355 DOI: 10.1016/j.jcis.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Rational construction of core@shell heterostructured photocatalysts is the key to realize efficient hydrogen production from water splitting attributing to the accelerated photoinduced charges separation/transfer and enhanced light absorption ability. In this work, two-dimensional (2D) ZnIn2S4 (ZIS) nanosheets were in-situ grown on phosphorus doped MnCo2O4.5 (P-MnCo2O4.5) nanospheres to construct P-MnCo2O4.5@ZIS heterostructured photocatalysts for efficient photocatalytic hydrogen production. The optimized 6 wt% P-MnCo2O4.5@ZIS composite presents remarkable photocatalytic hydrogen evolution rate of 4197 µmol g-1 h-1 (8 times of single ZIS) along with excellent cycling stability, which is comparable to most previous reported ZnIn2S4-based or even noble-metal involved catalysts. The improved photocatalytic performance is resulted from the distinguished heterostructure and components of P-MnCo2O4.5@ZIS, in which the close contact interface facilitates the separation/transfer and inhibits the recombination of charges, and the uniform distribution of ZIS nanosheets on P-MnCo2O4.5 increases the active sites and fortifies the light absorption. The present work comes up with a prospective method for establishing core@shell ZIS-based heterostructured photocatalysts for efficient hydrogen generation.
Collapse
Affiliation(s)
- Yueru Yan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuanyuan Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yun Lou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yinze Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
Li L, Xie Z, Ning J, Zhang Y, Sang Y, Zhang L, Liu F. An acid-tolerant Clostridium sp. BLY-1 strain with high biohydrogen production rate. BIORESOURCE TECHNOLOGY 2024; 409:131227. [PMID: 39117241 DOI: 10.1016/j.biortech.2024.131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Screening and isolating acid-tolerant bacteria capable of efficient hydrogen production can mitigate the inhibitory effects on microbial activity caused by rapid pH drops during fermentation. In this study, we isolated an acid-tolerant and highly efficient hydrogen-producing bacterium, named Clostridium sp. BLY-1, from acidic soil. Compared to the model strain Clostridium pasteurianum DSM 525, BLY-1 demonstrates a faster growth rate and superior hydrogen production capabilities. At an initial pH of 4.0, BLY-1's hydrogen production is 7.5 times greater than that of DSM 525, and under optimal conditions (pH=5.0), BLY-1's hydrogen production rate is 42.13% higher than DSM 525. Genomic analysis revealed that BLY-1 possesses a complete CiaRH two-component system and several stress-resistance components absent in DSM 525, which enhance its growth and hydrogen production in acidic environments. These findings provide a novel avenue for boosting the hydrogen production capabilities of Clostridium strains, offering new resources for advancing the green hydrogen industry.
Collapse
Affiliation(s)
- Liangyan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Zhangzhang Xie
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Jiarui Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuechao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuxuan Sang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| | - Fanghua Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
5
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
6
|
Chen DZ, Qiu J, Sun H, Liu Y, Ye J, Chen JM, Lu L. Enhanced chlorobenzene removal by internal magnetic field through initial cell adhesion and biofilm formation. Appl Microbiol Biotechnol 2024; 108:159. [PMID: 38252324 PMCID: PMC10803521 DOI: 10.1007/s00253-024-13001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential. Furthermore, the dehydrogenase content was promoted over 3 times, and CB removal steadily increased with the rising intensity indicating enhanced biofilm activity and reduced CB bioimpedance; this was further supported by kinetic analysis, which resulted in improved cell adhesive ability and biological utilisation of CB. The results introduced a novel concept of adjustable magnetic bioaugmentation and provided technical support for industrial waste gas treatments. KEY POINTS: • Regulable magnetic bioaugmentation was developed to promote 26% chlorobenzene removal • Chlorobenzene mineralisation was enhanced under the magnetic field • Microbial adhesion was promoted through weakening repulsive forces.
Collapse
Affiliation(s)
- Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jinfeng Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan, 316004, China
| | - Haimin Sun
- Zhejiang Zhonglan Environmental Technology Co., Ltd., Wenzhou, 325000, China
| | - Yanting Liu
- Yali High School, No. 428 Laodong Western Road, Changsha, Hunan, People's Republic of China, 410007
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
7
|
Machado BR, Duarte SH, Santos LO. Extracellular lipase production by Yarrowia lipolytica under magnetic fields. World J Microbiol Biotechnol 2023; 39:290. [PMID: 37650985 DOI: 10.1007/s11274-023-03732-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
This study aimed at estimating cultivation conditions to enable Yarrowia lipolytica NNRL Y-1095 to produce extracellular lipase and at evaluating the influence of magnetic fields (MF) on the lipase production and on its catalytic conditions. Culture conditions of carbon sources and surfactant defined to produce extracellular lipase were 10 g L-1 glucose, 15 g L-1 olive oil and 2 g L-1 Triton X-100. The highest lipase activity (34.8 U mL-1) was reached after 144 h when MFs were applied from 72 to 144 h of culture. It corresponds to an increase of 287.5% by comparison with the highest lipase activity in the control culture. MF application from 72 to 144 h did not change the optimal temperature of lipase, which was 37 °C, by comparison with the control. However, the optimal pH of the control was 7.0 while the one of lipase produced with MF was 8.0. Findings highlighted that the presence of MFs led to increase in synthesis of lipase by Y. lipolytica, with changes in the catalytic profile. This is one of the first studies of MF application to Y. lipolytica NRRL Y-1095 cultures to produce lipase.
Collapse
Affiliation(s)
- Bruno Roswag Machado
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Susan Hartwig Duarte
- Laboratory of Biochemistry and Microbiology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
8
|
Miebach K, Finger M, Scherer AMK, Maaß CA, Büchs J. Hydrogen online monitoring based on thermal conductivity for anaerobic microorganisms. Biotechnol Bioeng 2023; 120:2199-2213. [PMID: 37462090 DOI: 10.1002/bit.28502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
H2 -producing microorganisms are a promising source of sustainable biohydrogen. However, most H2 -producing microorganisms are anaerobes, which are difficult to cultivate and characterize. While several methods for measuring H2 exist, common H2 sensors often require oxygen, making them unsuitable for anaerobic processes. Other sensors can often not be operated at high gas humidity. Thus, we applied thermal conductivity (TC) sensors and developed a parallelized, online H2 monitoring for time-efficient characterization of H2 production by anaerobes. Since TC sensors are nonspecific for H2 , the cross-sensitivity of the sensors was evaluated regarding temperature, gas humidity, and CO2 concentrations. The systems' measurement range was validated with two anaerobes: a high H2 -producer (Clostridium pasteurianum) and a low H2 -producer (Phocaeicola vulgatus). Online monitoring of H2 production in shake flask cultivations was demonstrated, and H2 transfer rates were derived. Combined with online CO2 and pressure measurements, molar gas balances of the cultivations were closed, and an anaerobic respiration quotient was calculated. Thus, insight into the effect of medium components and inhibitory cultivation conditions on H2 production with the model anaerobes was gained. The presented online H2 monitoring method can accelerate the characterization of anaerobes for biohydrogen production and reveal metabolic changes without expensive equipment and offline analysis.
Collapse
Affiliation(s)
- Katharina Miebach
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Maurice Finger
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | | | | | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Talapko D, Talapko J, Erić I, Škrlec I. Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation. ENERGIES 2023; 16:3321. [DOI: 10.3390/en16083321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Hydrogen is widely considered as the fuel of the future. Due to the challenges present during hydrogen production using conventional processes and technologies, additional methods must be considered, like the use of microorganisms. One of the most promising technologies is dark fermentation, a process where microorganisms are utilized to produce hydrogen from biomass. The paper provides a comprehensive overview of the biological processes of hydrogen production, specifically emphasizing the dark fermentation process. This kind of fermentation involves bacteria, such as Clostridium and Enterobacterium, to produce hydrogen from organic waste. Synthetic microbial consortia are also discussed for hydrogen production from different types of biomasses, including lignocellulosic biomass, which includes all biomass composed of lignin and (hemi)cellulose, sugar-rich waste waters, and others. The use of genetic engineering to improve the fermentation properties of selected microorganisms is also considered. Finally, the paper covers the important aspect of hydrogen management, including storage, transport, and economics.
Collapse
Affiliation(s)
- Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivan Erić
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
10
|
Shui X, Jiang D, Li Y, Zhang H, Yang J, Zhang X, Zhang Q. Enhancement of static magnetic field on biological hydrogen production via photo-fermentation of giant reed. BIORESOURCE TECHNOLOGY 2023; 367:128221. [PMID: 36332865 DOI: 10.1016/j.biortech.2022.128221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The effect of static magnetic field (SMF) on the system of photo-fermentation biological hydrogen production remains dimness. The goal of this study was to clarify the correlation between external SMF addition and hydrogen production via photo-fermentation from giant reed. SMF with 20 mT improved the cumulative H2 yield by 26.1% and reduced the lag time of hydrogen production by 56.7% compared with that of without external magnetic field. Moreover, 20 mT of SMF not only enhanced the activity of nitrogenase by 94.52%, but also obtained the maximum energy conversion efficiency of 27.27%. The distribution of volatile fatty acids proved that the concentration of acetic acid and butyric acid were 137% and 81% higher than that of without SMF, respectively. The results would help to trigger the positive interaction between SMF and microorganism and to avoid the possible negative interaction.
Collapse
Affiliation(s)
- Xuenan Shui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jiabin Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Xueting Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
11
|
Cao J, Xu C, Zhou R, Duan G, Lin A, Yang X, You S, Zhou Y, Yang G. Potato peel waste for fermentative biohydrogen production using different pretreated culture. BIORESOURCE TECHNOLOGY 2022; 362:127866. [PMID: 36049714 DOI: 10.1016/j.biortech.2022.127866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
How to manage potato peel waste sustainably has been an issue faced by the potato industry. This work explored the feasibility of potato peel waste for biohydrogen production via dark fermentation, and investigated the effects of various inoculum enrichment methods (acid, aeration, heat-shock and base) on the process efficiency. It was observed that the hydrogen production showed a great variation when using various inoculum enrichment methods, and the aeration enriched inoculum obtained the maximum hydrogen yield of 71.0 mL/g-VSadded and VS removal of 28.9 %. Different enriched cultures also exhibited huge variations in the bacterial community structure and metabolic pathway. The highest abundance of Clostridium sensu stricto fundamentally contributed to the highest process efficiency for the fermenter inoculated with aeration treated culture. This work puts forward a promising strategy for recycling potato peel waste, and fills a gap in the optimal inoculum preparation method for biohydrogen fermentation of potato peel waste.
Collapse
Affiliation(s)
- Jinman Cao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Rui Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow G12 8QQ, UK
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
12
|
Wu Y, Liu X, Wang Q, Han D, Lin S. Fe3O4-Fused Magnetic Air Stone Prepared From Wasted Iron Slag Enhances Denitrification in a Biofilm Reactor by Increasing Electron Transfer Flow. Front Chem 2022; 10:948453. [PMID: 35873056 PMCID: PMC9304712 DOI: 10.3389/fchem.2022.948453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
nFe3O4 was prepared from waste iron slag and loaded onto air stone (named magnetic air stone or MAS in the following text). The main component of air stone is carborundum. To study the magnetic effects of MAS on denitrification, a biofilm reactor was built, and its microbial community structure and electron transfer in denitrification were analyzed. The results showed that MAS improved the performance of the reactor in both carbon and nitrogen removal compared with air stone (AS) control, and the average removal efficiencies of COD, TN, and NH4+-N increased by 17.15, 16.1, and 11.58%, respectively. High-throughput sequencing revealed that magnetism of MAS had a significant effect on the diversity and richness of microorganisms in the biofilm. The MAS also reduced the inhibition of rotenone, mipalene dihydrochloride (QDH), and sodium azide on the respiratory chain in denitrification and enhanced the accumulation of nitrite, in order to provide sufficient substrate for the following denitrification process. Therefore, the denitrification process is accelerated by the MAS. The results allowed us to deduce the acceleration sites of MAS in the denitrification electron transport chain. The existence of MAS provides a new rapid method for the denitrifying electron transport process. Even in the presence of respiratory inhibitors of denitrifying enzymes, the electron transfer acceleration provided by MAS still exists objectively. This is the mechanism through which MAS can restore the denitrification process inhibited by respiratory inhibitors to a certain extent.
Collapse
|
13
|
Li C, Hu Z, Gao Y, Ma Y, Pan X, Li X, Liu S, Chu B. Bioeffects of Static Magnetic Fields on the Growth and Metabolites of C. pyrenoidosa and T. obliquus. J Biotechnol 2022; 351:1-8. [DOI: 10.1016/j.jbiotec.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|