1
|
Segura T, Zanoni P, Brémond U, Lucet-Bérille C, Pradel A, Escudié R, Steyer JP. Modelling anaerobic digestion of agricultural waste: From lab to full scale. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114739. [PMID: 40112620 DOI: 10.1016/j.wasman.2025.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Biogas production through anaerobic digestion offers a promising alternative to address climate change. In this study, the ADM1 model was used to simulate the digestion of four different substrates: a mixture of rye and maize silage, a mixture of cow slurry and maize silage, cow slurry alone, and food waste. Furthermore, the determination of total solids (TS) content was integrated into the model. Based on experimental data from 5 L Continuous Stirred Tank Reactors (CSTR), ADM1 model parameters were calibrated for each substrate, primarily differing in hydrolysis and inhibition constants. These parameters, along with two additional sets of parameters from the literature, were subsequently applied in simulations to assess methane productivity, yield, and TS under increasing organic loading rates (OLR) for each substrate. Among the substrates, food waste showed the highest productivity, yield, and solids removal, while rye and maize silage substrate was the most unstable, with system failure at the lowest OLR (7 kgVS.m-3.d-1) compared to the other substrates. In addition, co-digestion of cow slurry and maize silage showed synergies between maize silage and cow slurry, achieving a productivity of 2.62 Nm3.m-3.d-1. Moreover, the parameters determined for rye and maize silage mixture were further used to simulate a full-scale anaerobic digestion unit fed with rye and maize silage as substrate. A difference in volatile fatty acid accumulation was found between the lab- and full-scale systems, suggesting a possible better microbial adaptation to inhibitory factors in the full-scale system. Further investigation into inhibition effects is recommended to improve the predictive accuracy of the ADM1.
Collapse
Affiliation(s)
- Tatiana Segura
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, F-11100 Narbonne, France.
| | - Paul Zanoni
- Air Liquide, Innovation Campus Paris, 1 Chemin de la Porte des Loges, 78354 Jouy-en-Josas, France.
| | - Ulysse Brémond
- Air Liquide, Innovation Campus Paris, 1 Chemin de la Porte des Loges, 78354 Jouy-en-Josas, France.
| | - Constance Lucet-Bérille
- Air Liquide, Innovation Campus Paris, 1 Chemin de la Porte des Loges, 78354 Jouy-en-Josas, France.
| | - Antoine Pradel
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, F-91192 Gif-sur-Yvette, France.
| | - Renaud Escudié
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, F-11100 Narbonne, France.
| | | |
Collapse
|
2
|
de Menezes CA, Dos Santos DR, Cavalcante WDA, Almeida PDS, Silva TP, da Silva Júnior FDCG, Gehring TA, Zaiat M, Dos Santos AB, Leitão RC. Innovative system to maximize methane production from fruit and vegetable waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62825-62839. [PMID: 39460861 DOI: 10.1007/s11356-024-35328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Anaerobic digestion of fruit and vegetable waste (FVW) offers an environmentally friendly alternative for waste disposal, converting it into methane for energy recovery. Typically, FVW digestion is conducted in a continuously stirred tank reactor (CSTR) due to its ease of use and stability with solid concentrations between 5 and 10%. However, CSTRs are limited to organic loading rates (OLRs) of about 3 kg COD/m3.day, resulting in large reactor volumes, low methane productivity, and costly wet digestate handling. This work introduces a novel method for methane production from FVW using a high-rate reactor system. The proposed approach involves grinding, centrifuging, and/or pressing the FVW to separate it into liquid and solid phases. The liquid phase is then digested in an up-flow anaerobic sludge blanket (UASB) reactor, while the solid phase undergoes digestion in a dry methanization reactor. A model incorporating all biological reactors was implemented in the Anaerobic Digestion Model 1 (ADM1) to provide a theoretical basis for the experimental development of this system. The current simulation scenarios offer initial references for operating the experimental system, which will, in turn, generate data for further model refinement. For instance, constrained liquid-gas mass transfer was considered for dry fermentation, with additional potential biochemical kinetic limitations to be incorporated following on experimental evidence. The success of this system could enable energy recovery in 72 Central Wholesale Markets across Brazil, offering a critical tool for planning, operating, and optimizing such systems.
Collapse
Affiliation(s)
| | - Daniel Rodrigues Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bl 710, Fortaleza, CE, 60440-900, Brazil
| | - Willame de Araújo Cavalcante
- Federal Institute of Education, Science, and Technology of Ceará, Av. Treze de Maio 2081, Fortaleza, CE, 60040-531, Brazil
| | | | - Thobias Pereira Silva
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bl 710, Fortaleza, CE, 60440-900, Brazil
| | | | - Tito Augusto Gehring
- Institute of Urban Water Management and Environmental Engineering, Department of Civil and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstr.150, 44801, Bochum, Germany
| | - Marcelo Zaiat
- São Carlos School of Engineering, University of São Paulo, Rua João Dagnone 1100, São Carlos, SP, 13563-120, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bl 710, Fortaleza, CE, 60440-900, Brazil
| | - Renato Carrhá Leitão
- Embrapa Tropical Agroindustry, Dra. Sara Mesquita 2270, Fortaleza, CE, 60511-075, Brazil.
| |
Collapse
|
3
|
Mahieux M, Aemig Q, Richard C, Delgenès JP, Juge M, Trably E, Escudié R. Improved organic matter biodegradation through pulsed H 2 injections during in situ biomethanation. BIORESOURCE TECHNOLOGY 2024; 407:131101. [PMID: 38996849 DOI: 10.1016/j.biortech.2024.131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
During in situ biomethanation, microbial communities can convert complex Organic Matter (OM) and H2 into CH4. OM biodegradation was compared between Anaerobic Digestion (AD) and in situ biomethanation, in semi-continuous processes, using two inocula from the digester (D) and the post-digester (PoD) of an AD plant. The impact of H2 on OM degradation was assessed using a fractionation method. Operational parameters included 20 days of hydraulic retention time and 1.5 gVS.L-1.d-1 of organic loading rate. During in situ biomethanation, 485 NmL of H2 were injected for each feeding (3 times a week). Maximum organic COD removal was 0.6 gCOD in AD control and at least 1.6 gCOD for in situ biomethanation. Therefore, COD removal was 2.5 times higher with H2 injections. These results bring out the potential of H2 injections during AD, not only for CO2 consumption but also for better OM degradation.
Collapse
Affiliation(s)
- M Mahieux
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France; ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - Q Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - C Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - J-P Delgenès
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France.
| |
Collapse
|
4
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
5
|
Basile A, Zampieri G, Kovalovszki A, Karkaria B, Treu L, Patil KR, Campanaro S. Modelling of microbial interactions in anaerobic digestion: from black to glass box. Curr Opin Microbiol 2023; 75:102363. [PMID: 37542746 DOI: 10.1016/j.mib.2023.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Anaerobic and microaerophilic environments are pervasive in nature, providing essential contributions to the maintenance of human health, biogeochemical cycles and the Earth's climate. These ecological niches are characterised by low free oxygen and oxidants, or lack thereof. Under these conditions, interactions between species are essential for supporting the growth of syntrophic species and maintaining thermodynamic feasibility of anaerobic fermentation. Kinetic models provide a simplified view of complex metabolic networks, while genome-scale metabolic models and flux-balance analysis (FBA) aim to unravel these systems as a whole. The target of this review is to outline the main similarities, differences and challenges associated with kinetic and metabolic modelling, and describe state-of-the-art modelling practices for studying syntrophies in the anaerobic digestion (AD) case study.
Collapse
Affiliation(s)
- Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Guido Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Adam Kovalovszki
- Department of Environmental and Resource Engineering, Technical University of Denmark, Building 115, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Behzad Karkaria
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy.
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| |
Collapse
|
6
|
Mo R, Guo W, Batstone D, Makinia J, Li Y. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes - A comprehensive review. WATER RESEARCH 2023; 244:120504. [PMID: 37634455 DOI: 10.1016/j.watres.2023.120504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Anaerobic digestion (AD) is a promising method for the recovery of resources and energy from organic wastes. Correspondingly, AD modelling has also been developed in recent years. The International Water Association (IWA) Anaerobic Digestion Model No. 1 (ADM1) is currently the most commonly used structured AD model. However, as substrates become more complex and our understanding of the AD mechanism grows, both systematic and specific modifications have been applied to the ADM1. Modified models have provided a diverse range of application besides AD processes, such as fermentation and biogas upgrading processes. This paper reviews research on the modification of the ADM1, with a particular focus on processes, kinetics, stoichiometry and parameters, which are the major elements of the model. The paper begins with a brief introduction to the ADM1, followed by a summary of modifications, including extensions to the model structure, modifications to kinetics (including inhibition functions) and stoichiometry, as well as simplifications to the model. The paper also covers kinetic parameter estimation and validation of the model, as well as practical applications of the model to a variety of scenarios. The review highlights the need for improvements in simulating AD and biogas upgrading processes, as well as the lack of full-scale applications to other substrates besides sludge (such as food waste and agricultural waste). Future research directions are suggested for model development based on detailed understanding of the anaerobic treatment mechanisms, and the need to recover of valuable products.
Collapse
Affiliation(s)
- Rongrong Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, Gdansk 80-233, Poland
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Moscoviz R, Haddad M, Rouez M, Conteau D. Achieving stable anaerobic mono-digestion of concentrated waste activated sludge without any pretreatment. BIORESOURCE TECHNOLOGY 2023; 380:129114. [PMID: 37137446 DOI: 10.1016/j.biortech.2023.129114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Sludge digesters are generally designed using empirical thresholds that were defined several decades ago, typically leading to large digesters displaying low organic loading rates (1-2.5 kgVS.m-3.d-1). However, the state of the art has significantly evolved since these rules were set, especially regarding bioprocess modelling and ammonia inhibition. This study demonstrates that digesters can be safely operated at high sludge concentration and total ammonia concentration up to 3.5 gN.L-1, without any sludge pretreatment. The possibility of operating sludge digesters at organic loading rates of 4 kgVS.m-3.d-1 by feeding concentrated sludge was identified through modelling and experimentally confirmed. Based on these results, the present work proposes a new mechanistic digester sizing strategy based on microbial growth and ammonia-related inhibition in lieu of historical empirical methods. Applying such method to sludge digester sizing could lead to very significant volume reduction (25-55%), which would result in reduced process footprint and more competitive building costs.
Collapse
Affiliation(s)
- Roman Moscoviz
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France.
| | - Mathieu Haddad
- SUEZ Treatment Infrastructure, SUEZ International, Tour CB21 - 16 place de l'Iris, 92040 Paris La Défense, France
| | - Maxime Rouez
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | | |
Collapse
|
8
|
Da Silva C, Peces M, Faundez M, Hansen H, Campos JL, Dosta J, Astals S. Gamma distribution function to understand anaerobic digestion kinetics: Kinetic constants are not constant. CHEMOSPHERE 2022; 306:135579. [PMID: 35792215 DOI: 10.1016/j.chemosphere.2022.135579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The Gamma model is a novel approach to characterise the complex degradation dynamics taking place during anaerobic digestion. This three parameters model results from combining the first-order kinetic model and the Gamma distribution function. In contrast to conventional models, where the kinetic constant is considered invariant, the Gamma model allows analysing the variability of the kinetic constant using a probability density function. The kinetic constant of mono-digestion and co-digestion batch tests of different wastes were modelled using the Gamma model and two common first-order models: one-step one-fraction model and one-step two-fraction model. The Gamma distribution function approximates three distinct probability density functions, i.e. exponential, log-normal, and delta Dirac. Specifically, (i) cattle paunch and pig manure approximated a log-normal distribution; (ii) cattle manure and microalgae approximated an exponential distribution, and (iii) primary sludge and cellulose approximated a delta Dirac distribution. The Gamma model was able to characterise two distinct waste activated sludge, one approximated to a log-normal distribution and the other to an exponential distribution. The same cellulose was tested with two different inocula; in both tests, the Gamma distribution function approximated a delta Dirac function but with a different kinetic value. The potential and consistency of Gamma model were also evident when analysing pig manure and microalgae co-digestion batch tests since (i) the mean k of the co-digestion tests were within the values of the mono-digestion tests, and (ii) the profile of the density function transitioned from log-normal to exponential distribution as the percentage of microalgae in the mixture increased.
Collapse
Affiliation(s)
- C Da Silva
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain; Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220, Aalborg, Denmark
| | - M Faundez
- Chemical and Environmental Engineering Department, Technical University Federico Santa María, 2390123, Valparaíso, Chile
| | - H Hansen
- Chemical and Environmental Engineering Department, Technical University Federico Santa María, 2390123, Valparaíso, Chile
| | - J L Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, 2520000, Viña del Mar, Chile
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain; Water Research Institute, University of Barcelona, Catalonia, 08001, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
9
|
Zhang M, Li Y, Yang B, Su Y, Xu J, Deng J, Zhou T. Promoted BPA degradation in food waste leachate via alkali-fluffed CoFe2O4@CoSiOx activated PMS under the assistance of inherent acetate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Leurent A, Moscoviz R. Modeling a propionate-oxidizing syntrophic coculture using thermodynamic principles. Biotechnol Bioeng 2022; 119:2423-2436. [PMID: 35680641 DOI: 10.1002/bit.28156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
A coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei was modeled using four biokinetic models, which only differed by the functions used to describe the growth yields (dynamic or constant) and the hydrogen inhibition function (noncompetitive or based on thermodynamics). First, a batch experiment was used to train the model and analyze the fitted parameters. Two fitting procedures were followed by minimizing the error on different indicators. Second, a chemostat experiment was used as a test data set to assess the predictive power of the models. Overall, the four models were able to accurately fit the train data set following both fitting procedures. However, some parameters fitted with the ADM1-like model differed significantly from values reported in the literature and were dependent on the fitting procedure. When applied to the test data set it systematically resulted in positive Gibbs free energy changes values for propionate oxidation, in contradiction with the second law of thermodynamics. On the opposite, the parameters fitted with model including both a thermodynamic-based inhibition function and a dynamic computation of growth yields were more consistent with values reported in the literature and repeatable whatever the fitting procedure. The results highlight the potential of implementing thermodynamic-based functions in biokinetic models.
Collapse
|
11
|
Li L, Gao Q, Liu X, Zhao Q, Wang W, Wang K, Zhou H, Jiang J. Insights into high-solids anaerobic digestion of food waste enhanced by activated carbon via promoting direct interspecies electron transfer. BIORESOURCE TECHNOLOGY 2022; 351:127008. [PMID: 35306128 DOI: 10.1016/j.biortech.2022.127008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
High-solids anaerobic digestion (HS-AD) of food waste frequently confronted the acidification and failure under high organic loading rates (OLRs). Results indicated powdered activated carbon (PAC) addition significantly enhanced methane production and process stability than granular activated carbon, and columnar activated carbon at higher OLRs via accelerating the propionate consumption. Potential direct interspecies electron transfer (DIET) partners, including various syntrophic oxidation bacteria and methanogens, were enriched with the activated carbon (AC) addition. Furthermore, DIET contribution to methane production was 35% by PAC, predicated by the modified Anaerobic Digestion Model No.1 (ADM1). This study deeply elucidated the DIET mechanism and offered the potential foundations for the selection and applications of AC-based materials in HS-AD of food waste.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiping Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Weiye Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|