1
|
Wang Q, An H, Ruan T, Lu X, Qiu D, Wu Z, Zhou Q, Xiao E. Study on short-chain fatty acids production from anaerobic fermentation of waste activated sludge pretreated by alkali-activated ammonium persulfate. BIORESOURCE TECHNOLOGY 2025; 428:132461. [PMID: 40164358 DOI: 10.1016/j.biortech.2025.132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
As a sustainable method for carbon recovery from waste activated sludge (WAS), anaerobic fermentation to produce short-chain fatty acids (SCFAs) is often limited by disintegration of WAS. A novel pretreatment method of alkaline-activated ammonium persulfate (AP/Alk), employing an initial pH of 10 and an ammonium persulfate dosage of 1 mM/g VSS (mmol per gram volatile suspended solids), was proposed in this study to enhance disintegration of WAS and yield of SCFAs. It was compared with one control and five pretreatment groups including alkali, persulfate, free ammonia, ammonium persulfate, alkali-activated sodium persulfate to elucidate the synergistic effects of free ammonia and radicals in WAS dissolution and acidogenesis within the AP/Alk system. The highest sludge disintegration degree with 30.3 % and maximum SCFAs production with 295.4 mg COD/g VSS were achieved by using the method. Comparative analysis showed that free ammonia primarily disrupted microbial cells to release intracellular organics, while radicals preferentially degraded tightly bound extracellular polymeric substances (TB-EPS) proteins. The synergistic effects of free ammonia and radicals accelerated accumulation of soluble proteins and polysaccharides, improved selectively enrichment of hydrolytic-acidogenic genera (e.g., Macellibacteroides, Proteiniclasticum, Desulfobulbus), and upregulated antioxidant genes to alleviate oxidative stress, but suppressed SCFAs consumers (e.g., unclassified_f__Comamonadaceae) including methanogens (e.g., Methanosaeta), thereby promoting the accumulation of SCFAs and acetic acid proportion. AP/Alk offers a sustainable strategy for WAS utilization and energy recovery.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Heng An
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Ruan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xinyi Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Enrong Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Tu Y, Sun S, Ding H, Wang X, Wu Z. Self-polarized schorl optimizing TiO 2 for photocatalytic persulfate activation and organic pollutants degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132120. [PMID: 37487333 DOI: 10.1016/j.jhazmat.2023.132120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Photocatalytic activation of persulfate has exhibited tremendous potential in water purification because of its green and environmentally friendly process. However, this process often exhibits low activation efficiencies and difficult recovery of the photocatalyst. Herein, schorl-supported nano-TiO2 composite photocatalysts (S/TiO2) were prepared by a mechanical grinding method for efficient activation of potassium monopersulfate (PMS). The anatase TiO2 nanoparticles with particle size of approximately 30 nm was uniformly loaded on the surface of schorl via forming Si-O-Ti bonds. The S/TiO2 assisted with PMS (S/TiO2-PMS) exhibited remarkable degradation performance and stability. In this system (S/TiO2-PMS), the C/C0 value of phenol solution (10 ppm) were decreased to 0.070 and 0 after 30 min and 90 min of irradiation, where the degradation extent were 93.0% and 100% respectively. The rate of phenol degradation with S/TiO2-PMS was 12.6 times that seen with TiO2-PMS. The oxidation active species were holes and SO4•- in S/TiO2-PMS system subjected to simulated sunlight. It was demonstrated that the polarization electric field of the schorl enhanced the separation efficiency of the photoinduced electrons and holes for improving the performance of the S/TiO2-PMS. On the other hand, the transformations of Fe3+ and Fe2+ on the schorl surface further promotes the activation of PMS. This work provides a new choice for designing TiO2-based photocatalytic persulfate activation system targeting the field of advanced oxidation water treatment.
Collapse
Affiliation(s)
- Yu Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Sijia Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, school of Water Resources and Environment, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Xuan Wang
- School of Energy Resources, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Zewei Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| |
Collapse
|
3
|
Kim DH, Kim HS, Im BG, Park JH. Repercussion of extracellular polymeric removal by low-temperature calcium peroxide pretreatment on bacterial fragmentation for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129479. [PMID: 37437814 DOI: 10.1016/j.biortech.2023.129479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
This study envisioned attaining the percipience of effective biohydrogen production from paper mill waste-activated sludge through low-temperature calcium peroxide-mediated bacterial pretreatment (TCP-BP). Floc dissociation with limited cell destruction was attained at a calcium peroxide dosage of 0.05 g/g suspended solids (SS) at 70 °C temperature. This TCP-BP method improves bacterial fragmentation, and very high SS solubilization was achieved at 42 h, with the solubilization and solid reduction of 18.6% and 14.1%, respectively. BP-only pretreatment shows lower solubilization efficiency of 9.4% than TCP-BP pretreatment due to the presence of flocs, which inhibit the enzymatic action during bacterial fragmentation. A biohydrogen test shows a high biohydrogen potential of 94.1 mL H2/gCOD for the TCP-BP sample, which is higher than that of the BP-only and control samples. According to the findings, low-temperature calcium peroxide-mediated bacterial fragmentation is validated to be an efficient process for sludge degradation and biohydrogen production.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Baek-Gyu Im
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea.
| |
Collapse
|
4
|
Banu JR, Kumar G, Gunasekaran M. Augmentation in polyhydroxybutyrate and biogas production from waste activated sludge through mild sonication induced thermo-fenton disintegration. BIORESOURCE TECHNOLOGY 2023; 369:128376. [PMID: 36414138 DOI: 10.1016/j.biortech.2022.128376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, an innovative approach was developed to enhance the hydrolysis through phase-separated pretreatment by removing exopolymeric substances via mild sonication followed by thermo-Fenton disintegration. The exopolymeric substances fragmentation was enhanced at the sonic specific energy input of 2.58 kJ/kg total solids. After exopolymeric substance removal, the disintegration of biomass by thermo-Fenton yield the solubilization of 29.8 % at Fe2+:H2O2 dosage and temperature of 0.009:0.036 g/g suspended solids and 80 °C as compared to thermo-Fenton alone disintegration. The polyhydroxybutyrate content of 93.1 % was accumulated by Bacillus aryabhattai at the optimum time of 42 h, while providing 70 % (v/v) pre-treated supernatant as a carbon source under nutrient-limiting condition. Moreover, the biogas generation of 0.187 L/g chemical oxygen demand was achieved using settled pretreated sludge. The pretreated sludge sample thus served as a carbon source for polyhydroxybutyrate producers as well as substrate for biogas production.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, TamilNadu 627007, India.
| |
Collapse
|
5
|
Rajesh Banu J, Gunasekaran M, Kumar V, Bhatia SK, Kumar G. Enhanced biohydrogen generation through calcium peroxide engendered efficient ultrasonic disintegration of waste activated sludge in low temperature environment. BIORESOURCE TECHNOLOGY 2022; 365:128164. [PMID: 36283675 DOI: 10.1016/j.biortech.2022.128164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Waste activated sludge is a renewable source for biohydrogen production, whereas the presence of complex biopolymers limits the hydrolysis step during this process, and thus pretreatment is required to disintegrate the sludge biomass. In this study, the feasibility of utilizing waste activated sludge to produce biohydrogen by improving the solubilization by means of thermo CaO2 engendered sonication disintegration (TCP-US) was studied. The optimized condition for extracellular polymeric substance (EPS) dissociation was obtained at the CaO2 dosage of 0.05 g/g SS at 70 °C. The maximum disintegration after EPS removal was achieved at the sonic specific energy input of 1612.8 kJ/kg TS with the maximum solubilization and SS reduction of 23.7% and 18.14%, respectively, which was higher than the US alone pretreatment. Thus, this solubilization yields higher biohydrogen production of 114.3 mLH2/gCOD in TCP-US sample.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus Tirunelveli, Tamilnadu 627007 India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Godvin Sharmila V, Kumar G, Sivashanmugham P, Piechota G, Park JH, Adish Kumar S, Rajesh Banu J. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. BIORESOURCE TECHNOLOGY 2022; 363:127985. [PMID: 36126843 DOI: 10.1016/j.biortech.2022.127985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 05/16/2023]
Abstract
A significant ecological problem was developed on disposing the enormous amounts of waste activated sludge (WAS) produced by traditional wastewater treatment. There have been various attempts recently originated to develop innovative methods for substantial sludge treatment. The most frequently used approach for treating sludge to produces methane and reduces sludge is anaerobic treatment. The hydrolysis phase in WAS limits the breakdown of complex macrobiotic compounds. The presence of extracellular polymeric substances (EPS) in biomass prevents the substrate from being hydrolyzed. Enhancing substrate hydrolysis involves removal of EPS preceded by phase separated pretreatment. Hence, a critical assessment of various phase separated pretreatment that has a remarkable effect on the anaerobic digestion process was documented in detail. Moreover, the economic viability and energy requirement of this treatment process was also discussed. Perspectives and recommendations for methane production were also provided to attain effectual sludge management.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - P Sivashanmugham
- Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, 40a/3 Legionów Str., 87-100 Toruń, Poland
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu 610005, India.
| |
Collapse
|
7
|
Thermally activated persulfate-based Advanced Oxidation Processes — recent progress and challenges in mineralization of persistent organic chemicals: a review. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Dinesh Kumar M, Godvin Sharmila V, Kumar G, Park JH, Al-Qaradawi SY, Rajesh Banu J. Surfactant induced microwave disintegration for enhanced biohydrogen production from macroalgae biomass: Thermodynamics and energetics. BIORESOURCE TECHNOLOGY 2022; 350:126904. [PMID: 35227914 DOI: 10.1016/j.biortech.2022.126904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
This research work aimed about the enhanced bio-hydrogen production from marine macro algal biomass (Ulva reticulate) through surfactant induced microwave disintegration (SIMD). Microwave disintegration (MD) was performed by varying the power from 90 to 630 W and time from 0 to 40 min. The maximum chemical oxygen demand (COD) solubilisation of 27.9% was achieved for MD at the optimal power (40%). A surfactant, ammonium dodecyl sulphate (ADS) is introduced in optimal power of MD which enhanced the solubilisation to 34.2% at 0.0035 g ADS/g TS dosage. The combined SIMD pretreatment significantly reduce the treatment time and increases the COD solubilisation when compared to MD. Maximum hydrogen yield of 54.9 mL H2 /g COD was observed for SIMD than other samples. In energy analysis, it was identified that SIMD was energy efficient process compared to others since SIMD achieved energy ratio of 1.04 which is higher than MD (0.38).
Collapse
Affiliation(s)
- M Dinesh Kumar
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Siham Yousuf Al-Qaradawi
- Dept. of Chemistry & Earth Sciences, College of Arts & Sciences, Qatar University, P. O. Box 2713, Doha, Qatar
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Tiruvarur 610005, India.
| |
Collapse
|
10
|
Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150347. [PMID: 34563898 DOI: 10.1016/j.scitotenv.2021.150347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Rhamnolipid (RL), as an environmentally compatible biosurfactant, has been used to enhance waste activated sludge (WAS) fermentation. However, the effect of RL on hydrogen accumulation in anaerobic fermentation remains unclear. Therefore, this work targets to investigate the mechanism of RL-based dark fermentation system on hydrogen production of WAS. It was found that the maximum yield of hydrogen increased from 1.76 ± 0.26 to 11.01 ± 0.30 mL/g VSS (volatile suspended solids), when RL concentration increased from 0 to 0.10 g/g TSS (total suspended solids). Further enhancement of RL level to 0.12 g/g TSS slightly reduced the production to 10.80 ± 0.28 mL/g VSS. Experimental findings revealed that although RL could be degraded to generate hydrogen, it did not play a major role in enhancing hydrogen accumulation. Mechanism analysis suggested that RL decreased the surface tension between sludge liquid and hydrophobic compounds, thus accelerating the solubilization of WAS, improving the proportion of biodegradable substances which could be used for subsequent hydrogen production. Regardless of the fact that adding RL suppressed all the fermentation processes, the inhibition effect of processes associated with hydrogen consumption was much severer than that of hydrogen production. Further investigations of microbial community revealed that RL enriched the relative abundance of hydrogen producers e.g., Romboutsia but reduced that of hydrogen consumers like Desulfobulbus and Caldisericum.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Kexin Sui
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|