1
|
Deng H, Wang S, Shi J, Zhang D, Xu W. Efficient conversion of lignin fractions in lignocellulose using multifunctional polyoxometalate catalysts. Int J Biol Macromol 2025; 306:141613. [PMID: 40023982 DOI: 10.1016/j.ijbiomac.2025.141613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The efficient catalytic conversion of lignin represents a critical challenge in biomass valorization, primarily due to the inherent difficulty in selectively depolymerizing lignin while maintaining the structural integrity of cellulose and hemicellulose. Herein, we present an innovative approach involving the synthesis of ionic liquid polyoxometalate (IL-POM) catalysts, which integrate both redox-active and Lewis acid sites, and are further modified with a choline chloride monomer. Among the synthesized catalysts, ChH4PMo11Al0.5V0.5O40 demonstrated exceptional catalytic performance, achieving an aromatic compound yield of 16.35 % under optimized conditions. Comprehensive characterization of the catalyst revealed that its catalytic efficacy is intrinsically linked to its acidity profile, with the synergistic interplay between Brønsted and Lewis acids facilitating the cleavage of CC and CO bonds. Notably, the incorporation of choline chloride was found to be pivotal in ensuring the catalyst's recyclability. This study underscores the potential of multifunctional IL-POM catalysts in advancing biomass valorization, providing a promising pathway to bridge the gap between homogeneous and heterogeneous catalysis for sustainable biomass conversion.
Collapse
Affiliation(s)
- Haoyu Deng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Shumin Wang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Dan Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China.
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China.
| |
Collapse
|
2
|
Zhao L, Wang S, Li X, Zhang D, Shi J, Xu W. Selective oxidative depolymerization of lignin into aromatic monomers using a palladium-doped polyoxometalate catalyst. Int J Biol Macromol 2025; 311:143644. [PMID: 40311965 DOI: 10.1016/j.ijbiomac.2025.143644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The depolymerization of lignin via selective cleavage of β-O-4 linkages is hindered by the tendency of Cα-OH groups to form benzyl carbocations, leading to condensation side reactions. Although pretreatment strategies to block Cα-OH have been widely studied, methods for efficient oxidative depolymerization remain limited. Herein, we propose a polyoxometalate (POM)-based catalytic approach under mild conditions (150 °C, 1 MPa O₂) to address this challenge. A series of metal-doped POM catalysts were synthesized, among which Pd/CsPMA exhibited optimal performance. Through condition optimization (180 min reaction, lignin-to-catalyst mass ratio of 1:1), an aromatic monomer yield of 11.01 wt% was achieved. The main product yield was 81.9 % of the total lignin yield. Investigations using lignin model compounds indicated that Pd/CsPMA promotes selective oxidation of Cα-OH groups, suggesting a synergistic mechanism between palladium and the POM framework. Furthermore, Pd/CsPMA maintained stable catalytic performance over five consecutive cycles without significant deactivation. This work demonstrates the potential of rationally designed POM catalysts for lignin valorization and provides insights into suppressing condensation during biomass conversion.
Collapse
Affiliation(s)
- Luyao Zhao
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Shumin Wang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Xiangyu Li
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Dan Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Jilin City, Jilin Province 132013, PR China.
| |
Collapse
|
3
|
Li Y, Liu M, Tang Q, Liang K, Sun Y, Yu Y, Lou Y, Liu Y, Yu H. Hydrogen-transfer strategy in lignin refinery: Towards sustainable and versatile value-added biochemicals. CHEMSUSCHEM 2024; 17:e202301912. [PMID: 38294404 DOI: 10.1002/cssc.202301912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Lignin, the most prevalent natural source of polyphenols on Earth, offers substantial possibilities for the conversion into aromatic compounds, which is critical for attaining sustainability and carbon neutrality. The hydrogen-transfer method has garnered significant interest owing to its environmental compatibility and economic viability. The efficacy of this approach is contingent upon the careful selection of catalytic and hydrogen-donating systems that decisively affect the yield and selectivity of the monomeric products resulting from lignin degradation. This paper highlights the hydrogen-transfer technique in lignin refinery, with a specific focus on the influence of hydrogen donors on the depolymerization pathways of lignin. It delineates the correlation between the structure and activity of catalytic hydrogen-transfer arrangements and the gamut of lignin-derived biochemicals, utilizing data from lignin model compounds, separated lignin, and lignocellulosic biomass. Additionally, the paper delves into the advantages and future directions of employing the hydrogen-transfer approach for lignin conversion. In essence, this concept investigation illuminates the efficacy of the hydrogen-transfer paradigm in lignin valorization, offering key insights and strategic directives to maximize lignin's value sustainably.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Meng Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Qi Tang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Kaixia Liang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yaxu Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yanyan Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
4
|
Chen M, Li L, Wang Y, Liang D, Zhou Z, Xin H, Li C, Yuan G, Wang J. Sulfonated P-W modified nitrogen-containing carbon-based solid acid catalysts for one-pot conversion of cellulose to ethyl levulinate under water-ethanol medium. Int J Biol Macromol 2024; 260:129472. [PMID: 38262833 DOI: 10.1016/j.ijbiomac.2024.129472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Converting cellulose (Cel) into ethyl levulinate (EL) is one of the promising strategies for supplying liquid fuels. In this paper, the prepared sulfonated P-W-modified N-containing carbon-based solid acid catalyst (PWNCS), in which the Polyaniline (PANI) was employed as N and C precursors, successfully converted Cel into EL under the water-ethanol medium. The characterization results demonstrated that a tiny addition of P increased the Brønsted acid sites (BAS) content and defective WO3 provided the Lewis acid sites (LAS), meanwhile, the sulfonation process did not change the fundamental structure but introduced the sulfonic groups to dramatically increase the acidic content. Therefore, under optimized reaction conditions, PWNCS realized about 100% Cel conversion and 71.61% of EL yield, furthermore, the selectivity of EL reached 89.14%. In addition, the effect of water on the reaction pathway of Cel to EL over PWNCS was proposed. The addition of water generally resulted in the hydration of defective WO3 to reduce the LAS and increase BAS, which significantly inhibited the side reactions of retro-aldol condensation (RAC) and subsequent etherification reactions during Cel conversion and then improved the selectivity of EL.
Collapse
Affiliation(s)
- Mingqiang Chen
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China.
| | - Longyang Li
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Yishuang Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China.
| | - Defang Liang
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Zinan Zhou
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Haosheng Xin
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Chang Li
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Gang Yuan
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Jun Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| |
Collapse
|
5
|
Han B, Chen L, Xiao K, Chen R, Cao D, Yu L, Li Y, Tao S, Liu W. Characteristics of dissolved organic matter (DOM) in Chinese farmland soils under different climate zone types: A molecular perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119695. [PMID: 38035506 DOI: 10.1016/j.jenvman.2023.119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Interactions between dissolved organic matter (DOM) and surrounding environments are highly complex. Understanding DOM at the molecular level can contribute to the management of soil pollution and safeguarding agricultural fields. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has enabled a molecular-level understanding of DOM. Accordingly, in this study, we investigated soil samples from 27 different regions of mainland China with various soil types and climatic characteristics. Based on the geographical features of the four typical climatic zones in mainland China (temperate monsoon, temperate continental, subtropical monsoon, and Qinghai-Tibet Plateau climates), we employed high-resolution mass spectrometry to determine the molecular diversity of DOM under different climatic conditions. The results indicated that lignin and tannin-like substances were the most active categories of DOM in the soils. Collectively, the composition and unsaturation of DOM molecules are influenced by sunlight, precipitation, temperature, and human activity. All climatic regions contained a substantial number of characteristic molecules, with CHO and CHON constituting over 80%, and DOM containing nitrogen and sulfur was relatively more abundant in the monsoon regions. The complex composition of DOM incorporates various active functional groups, such as -NO2 and -ONO2. Furthermore, soil DOM in the monsoon regions showed higher unsaturation and facilitated various (bio) biochemical reactions in the soil.
Collapse
Affiliation(s)
- BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - RuYa Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang Province, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Shen Z, Shi C, Liu F, Wang W, Ai M, Huang Z, Zhang X, Pan L, Zou J. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306693. [PMID: 37964410 PMCID: PMC10767463 DOI: 10.1002/advs.202306693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.
Collapse
Affiliation(s)
- Zhensheng Shen
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Fan Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Wei Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Minhua Ai
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhenfeng Huang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
7
|
Zhang Y, Jia S, Wang X, Deng H, Xu W, Shi J. Bimetallic polyoxometalates catalysts for efficient lignin depolymerization: Unlocking valuable aromatic compounds from renewable feedstock. Int J Biol Macromol 2023; 253:127363. [PMID: 37827421 DOI: 10.1016/j.ijbiomac.2023.127363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Lignin, a complex and abundant polymer present in lignocellulosic biomass, holds immense potential as a renewable source for the production of valuable aromatic compounds. However, the efficient depolymerization of lignin into these compounds remains a formidable challenge. Here, we present a promising solution by harnessing polyoxometalates (POMs) catalysts, which exhibit improved catalytic performance and selectivity. We synthesized a series of NixCoy@POMs catalysts (POMs: CsPW or CsPMo) and explored their application in the depolymerization of pine lignin, aiming to investigate the influence of different metal species and doping ratios of POMs on catalytic performance. Through meticulous optimization of reaction conditions, we achieved significant yields of valuable aromatic compounds, including methyl vanillate, vanillin, and 4-hydroxy-3-methoxyacetophenone. Furthermore, the Ni0.75Co0.75@CsPMo catalyst demonstrated exceptional efficacy in catalyzing the cracking process of C-C and/or C-O bonds in a β-O-4 dimer model compound. Notably, our catalyst exhibited outstanding stability over five cycles, underscoring its suitability as an effective heterogeneous catalyst for cyclic lignin depolymerization. This study sheds light on the potential of POMs-based catalysts for advancing lignin valorization and offers new avenues for sustainable biomass conversion into valuable chemicals.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Suyuan Jia
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Haoyu Deng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| |
Collapse
|
8
|
Xu X, Liang B, Zhu Y, Chen J, Gan T, Hu H, Zhang Y, Huang Z, Qin Y. Direct and efficient conversion of cellulose to levulinic acid catalyzed by carbon foam-supported heteropolyacid with Brønsted-Lewis dual-acidic sites. BIORESOURCE TECHNOLOGY 2023; 387:129600. [PMID: 37532058 DOI: 10.1016/j.biortech.2023.129600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
This study aimed to produce bio-based levulinic acid (LA) via direct and efficient conversion of cellulose catalyzed by a sustainable solid acid. A carbon foam (CF)-supported aluminotungstic acid (HAlW/CF) catalyst with Brønsted-Lewis dual-acidic sites was creatively engineered by a hydrothermal impregnation method. The activity of the HAlW/CF catalyst was determined via the hydrolysis and conversion of cellulose to prepare LA in aqueous system. The cooperative effect of Brønsted and Lewis acids in HAlW/CF resulted in high cellulose conversion (89.4%) and LA yield (60.9%) at 180 °C for 4 h, which were greater than the combined catalytic efficiencies of single HAlW and CF under the same conditions. The HAlW/CF catalyst in block form exhibited superior catalytic activity, facile separation from reaction system, and favorable reusability. This work offers novel perspectives for the development of recyclable dual-acidic catalysts to achieve one-pot catalytic conversion of biomass to value-added chemicals.
Collapse
Affiliation(s)
- Xiaofen Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Beiling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ying Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiashuo Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Sethupathy S, Murillo Morales G, Gao L, Wang H, Yang B, Jiang J, Sun J, Zhu D. Lignin valorization: Status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2022; 347:126696. [PMID: 35026423 DOI: 10.1016/j.biortech.2022.126696] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
As an abundant aromatic biopolymer, lignin has the potential to produce various chemicals, biofuels of interest through biorefinery activities and is expected to benefit the future circular economy. However, lignin valorization is hindered by a series of constraints such as heterogeneous polymeric nature, intrinsic recalcitrance, strong smell, dark colour, challenges in lignocelluloses fractionation and the presence of high bond dissociation enthalpies in its functional groups etc. Nowadays, industrial lignin is mostly combusted for electricity production and the recycling of inorganic compounds involved in the pulping process. Given the research and development on lignin valorization in recent years, important applications such as lignin-based hydrogels, surfactants, three-dimensional printing materials, electrodes and production of fine chemicals have been systematically reviewed. Finally, this review highlights the main constraints affecting industrial lignin valorization, possible solutions and future perspectives, in the light of its abundance and its potential applications reported in the scientific literature.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Gabriel Murillo Morales
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Lu Gao
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering /College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Jianxiong Jiang
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Jianzhong Sun
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Daochen Zhu
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China.
| |
Collapse
|
10
|
Liu Z, Huang Z, Zhao W, Liu X. Highly efficient Ni–NiO/carbon nanotubes catalysts for the selective transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni–NiO/CNTs showed an excellent activity towards the catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan.
Collapse
Affiliation(s)
- Zixuan Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Zexing Huang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Wenguang Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Xianxiang Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|