1
|
Wu M, Ailijiang N, Li N, Zaimire A, Chen H, He C, Zhang Y. Performance of pharmaceutical products removal in a bioelectrochemical system at low temperatures and changes in microbial communities and antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64493-64508. [PMID: 39102148 DOI: 10.1007/s11356-024-34577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Biological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.7% and 94.7%, higher than that in the control system (12.2 ± 1.5%, 36.5 ± 5.9%), and aerobic zone favors DIC and IBU removal; fluoroquinolone antibiotics (FQs) removals in the system with aerobic cathodic and anaerobic anodic chambers were 17.5-22.4% higher than that in the control system (9.1-22.4%), and anaerobic zone favors FQs removal. Analysis of microbial community structure and ARGs showed that different electrotrophic microbes (Flavobacterium, Acinetobacter, and Delftia) with cold-resistant ability to degrade PPs were enriched in different electrode combinations, and the aerobic cathodic chambers could remove certain ARGs. These results showed that AO-UBERs under intermittent electrical stimulation mode are an alternative method for the effective removal of PPs and ARGs at low temperatures.
Collapse
Affiliation(s)
- Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China.
| | - Na Li
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Abudoushalamu Zaimire
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| |
Collapse
|
2
|
Kižys K, Pirštelis D, Morkvėnaitė-Vilkončienė I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces cerevisiae. BIOSENSORS 2024; 14:572. [PMID: 39727837 DOI: 10.3390/bios14120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Microbial fuel cells (MFCs) are a candidate for green energy sources due to microbes' ability to generate charge in their metabolic processes. The main problem in MFCs is slow charge transfer between microorganisms and electrodes. Several methods to improve charge transfer have been used until now: modification of microorganisms by conductive polymers, use of lipophilic mediators, and conductive nanomaterials. We created an MFC with a graphite anode, covering it with 9,10-phenatrenequinone and polypyrrole-modified Saccharomyces cerevisiae with and without 10 nm sphere gold nanoparticles. The MFC was evaluated using cyclic voltammetry and power density measurements. The peak current from cyclic voltammetry measurements increased from 3.76 mA/cm2 to 5.01 mA/cm2 with bare and polypyrrole-modified yeast, respectively. The MFC with polypyrrole- and nanoparticle-modified yeast reached a maximum power density of 150 mW/m2 in PBS with 20 mM Fe(III) and 20 mM glucose, using a load of 10 kΩ. The same MFC with the same load in wastewater reached 179.2 mW/m2. These results suggest that this MFC configuration can be used to improve charge transfer.
Collapse
Affiliation(s)
- Kasparas Kižys
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Domas Pirštelis
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| |
Collapse
|
3
|
Ghanam A, Cecillon S, Sabac A, Mohammadi H, Amine A, Buret F, Haddour N. Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells. MICROMACHINES 2023; 14:2142. [PMID: 38138311 PMCID: PMC10744851 DOI: 10.3390/mi14122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
This research sought to enhance the efficiency and biocompatibility of anodes in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs), with an aim toward large-scale, real-world applications. The study focused on the effects of acid-heat treatment and chemical modification of three-dimensional porous pristine carbon felt (CF) on power generation. Different treatments were applied to the pristine CF, including coating with carbon nanofibers (CNFs) dispersed using dodecylbenzene sulfonate (SDBS) surfactant and biopolymer chitosan (CS). These processes were expected to improve the hydrophilicity, reduce the internal resistance, and increase the electrochemically active surface area of CF anodes. A high-resolution scanning electron microscopy (HR-SEM) analysis confirmed successful CNF coating. An electrochemical analysis showed improved conductivity and charge transfer toward [Fe(CN)6]3-/4- redox probe with treated anodes. When used in an air cathode single-chamber MFC system, the untreated CF facilitated quicker electroactive biofilm growth and reached a maximum power output density of 3.4 W m-2, with an open-circuit potential of 550 mV. Despite a reduction in charge transfer resistance (Rct) with the treated CF anodes, the power densities remained unchanged. These results suggest that untreated CF anodes could be most promising for enhancing power output in BESs, offering a cost-effective solution for large-scale MFC applications.
Collapse
Affiliation(s)
- Abdelghani Ghanam
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco (A.A.)
| | - Sebastien Cecillon
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| | - Andrei Sabac
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| | - Hasna Mohammadi
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco (A.A.)
| | - Aziz Amine
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco (A.A.)
| | - François Buret
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| | - Naoufel Haddour
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| |
Collapse
|
4
|
Gao Y, Huang J, Zhang L, Zhu Y, Yang P, Xue L, Wang N, He W. A three-dimensional phenolic-based carbon anode for microbial electrochemical system with customized macroscopic pore structure to promote interior bacteria colonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160131. [PMID: 36372162 DOI: 10.1016/j.scitotenv.2022.160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrochemical system (MES) is an emerging wastewater treatment technology that compensates the energy demands of containments removal by in situ converting the chemical energy of organic pollutants. As the structure for exoelectrogens and the reaction site of extracellular electron transfer (EET), the anode is essential for MES. The future commercial application of MES requires efficiency and large-scale fabrication available anode. In this study, a 3D anode with millimeter-scale pores (3D-MPA) was successfully constructed by sacrificial template method, with low-cost phenolic resin as carbon precursor and polymethyl methacrylate (PMMA) pellets as template. With customized and ordered pore of 1 mm, the 3D-MPAs allowed the microorganisms to colonize inside, improving anodic space utilization efficiency. Different carbonization temperature in tested range from 700 °C to 1000 °C regulated the micrometer-scale convex structures and surface roughness of 3D-MPAs, causing electrochemical performance changes. The 3D-MPA-900 obtained the largest electroactive surface area (102 ± 4.1 cm2) and smallest ohmic resistance (1.8 ± 0.09 Ω). Equipped with MES, 3D-MPA-900 reached the highest power density and current density (2590 ± 25 mW m-2 and 5.20 ± 0.07 A m-2). Among tested 3D-MPA, the excellent performance of 3D-MPA-900 might be attributed by its convex structures with suitable size and surface coverage. The surface roughness of 3D-MPA-900 enhanced the microorganism adherence, which then promoted EET on anode surface. Generally, phenolic-based 3D-MPA made of sacrificial-template method had controllable porous structure, large-scale fabrication availability, high chemical stability and excellent mechanical property, which could be promising for the commercial application of MES.
Collapse
Affiliation(s)
- Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yujie Zhu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
5
|
Lin X, Zheng L, Zhang M, Qin Y, Liu Y, Li H, Li C. Simultaneous boost of anodic electron transfer and exoelectrogens enrichment by decorating electrospinning carbon nanofibers in microbial fuel cell. CHEMOSPHERE 2022; 308:136434. [PMID: 36113652 DOI: 10.1016/j.chemosphere.2022.136434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/07/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cell (MFC) is a promising technology in wastewater recovery driven by microbial metabolism. However, the low power output resulting from the sluggish extracellular electron transfer (EET) between the anode surface and exoelectrogens dramatically restricted the further application. This study fabricated a high-performance anode by decorating porous and conductive electrospinning carbon nanofibers (CNFs). The maximum power density in MFC modified with 14 wt% polyacrylonitrile CNFs (M-CNF14, 9.6 ± 0.2 W m-3) was 1.9 and 2.7 times higher than carbon black modified MFC (M-CB, 5.1 ± 0.1 W m-3) and the blank (M-BA, 3.6 ± 0.1 W m-3), respectively. Denser biofilm and more microbial nanowires were observed in the M-CNF14 anode than in other conditions. Furthermore, the redox peak current of c-type cytochrome was 1.7-21 times higher in M-CNF14 than in the blank control, verifying the preferable EET activity. Several exoelectrogens like Petrimonas and Comamonas were enriched in M-CNF14 and showed a positive correlation to power generation. Besides, more simplified and modular interrelations among exoelectrogens and other bacteria were obtained in M-CNF14. This study revealed the microbial-related mechanism for simultaneously improving EET and exoelectrogens enrichment by CNFs modified anode, providing guidelines for high-performance wastewater recovery.
Collapse
Affiliation(s)
- Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Linshan Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Min Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yue Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Huiyu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Kalathil S, Miller M, Reisner E. Microbial Fermentation of Polyethylene Terephthalate (PET) Plastic Waste for the Production of Chemicals or Electricity. Angew Chem Int Ed Engl 2022; 61:e202211057. [PMID: 36103351 PMCID: PMC9828132 DOI: 10.1002/anie.202211057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Ideonella sakaiensis (I. sakaiensis) can grow on polyethylene terephthalate (PET) as the major carbon and energy source. Previous work has shown that PET conversion in the presence of oxygen released carbon dioxide and water while yielding adenosine triphosphate (ATP) through oxidative phosphorylation. This study demonstrates that I. sakaiensis is a facultative anaerobe that ferments PET to the feedstock chemicals acetate and ethanol in the absence of oxygen. In addition to PET, the pure monomer ethylene glycol (EG), the intermediate product ethanol, and the carbohydrate fermentation test substance maltose can also serve as fermenting substrates. Co-culturing of I. sakaiensis with the electrogenic and acetate-consuming Geobacter sulfurreducens produced electricity from PET or EG. This newly identified plastic fermentation process by I. sakaiensis provides thus a novel biosynthetic route to produce high-value chemicals or electricity from plastic waste streams.
Collapse
Affiliation(s)
- Shafeer Kalathil
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Melanie Miller
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
7
|
Wang Y, Cheng X, Liu K, Dai X, Qi J, Ma Z, Qiu Y, Liu S. 3D Hierarchical Co 8FeS 8-FeCo 2O 4/N-CNTs@CF with an Enhanced Microorganisms-Anode Interface for Improving Microbial Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35809-35821. [PMID: 35912639 DOI: 10.1021/acsami.2c09622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFCs) are promising ecofriendly techniques for harvesting bioenergy from organic and inorganic matter. Currently, it is challenging to design MFC anodes with favorable microorganism attachment and fast extracellular electron transfer (EET) rate for high MFC performance. Here we prepared N-doped carbon nanotubes (NCNTs) on carbon felt (CF) and used it as a support for growing hierarchical Co8FeS8-FeCo2O4/NCNTs core-shell nanostructures (FeCo/NCNTs@CF). We observed improved wettability, specific areal capacitance, and diffusion coefficient, as well as small charge transfer resistance compared with bare CF. MFCs equipped with FeCo/NCNTs@CF displayed a power density of 3.04 W/m2 and COD removal amount of 221.0 mg/L/d, about 47.6 and 290.1% improvements compared with that of CF. Biofilm morphology and 16s rRNA gene sequence analysis proved that our anode facilitated the enrichment growth of exoelectrogens. Flavin secretion was also promoted on our hierarchical elelctrode, effectively driving the EET process. This work disclosed that hierarchical nanomaterials modified electrode with tailored physicochemical properties is a promising platform to simultaneously enhance exoelectrogen attachment and EET efficiency for MFCs.
Collapse
Affiliation(s)
- Yanping Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Xusen Cheng
- College of Chemistry, Northeast Forestry University, Harbin 150040, PR China
| | - Ke Liu
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Xiaofan Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Jinteng Qi
- College of Chemistry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Yunfeng Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, No. 2 Yikuang Street, Nan Gang District, Harbin 150080, People's Republic of China
| | - Shaoqin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, No. 2 Yikuang Street, Nan Gang District, Harbin 150080, People's Republic of China
| |
Collapse
|
8
|
Cao H, Sun J, Wang K, Zhu G, Li X, Lv Y, Wang Z, Feng Q, Feng J. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for methanation of maize straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154997. [PMID: 35381255 DOI: 10.1016/j.scitotenv.2022.154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The performance of the bioelectrochemical anaerobic digestion (BEAD) reactor was investigated with different carbon material-modified electrodes for the methanation of maize straw. The carbon material-modified electrodes used titanium (Ti) mesh modified with carbon nanotube (CNT), carbon black (CB), and activated carbon (AC). The maximum cumulative methane production obtained in the Ti-CNT reactor was (616.4 ± 9.3) mL/g VS, while the maximum methane production rate in the Ti-AC reactor was (61.9 ± 1.0) mL/g VS.d.The electroactive bacteria were well enriched by the different electrodes, and the enriched electroactive bacteria further facilitate the direct interspecies electron transfer (DIET) for methane production. Additionally, we found the phylum Firmicutes showed a linear relationship to methanogenic performance, as well as the Genus Proteiniborus. The Ti-CNT electrode shows better performance by the electrochemical analysis. These findings provide critical knowledge for the large-scale use of the BEAD process and the treatment of maize straw.
Collapse
Affiliation(s)
- Hongrui Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jin Sun
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jie Feng
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| |
Collapse
|
9
|
Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022; 10:microorganisms10051007. [PMID: 35630450 PMCID: PMC9142973 DOI: 10.3390/microorganisms10051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial electrolysis cells (MECs) are an emerging technology capable of harvesting part of the potential chemical energy in organic compounds while producing hydrogen. One of the main obstacles in MECs is the bacterial anode, which usually contains mixed cultures. Non-exoelectrogens can act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with the exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In addition, the bacterial anode needs to withstand the shear and friction forces existing in domestic wastewater plants. In this study, a bacterial anode was encapsulated by a microfiltration membrane. The novel encapsulation technology is based on a small bioreactor platform (SBP) recently developed for achieving successful bioaugmentation in wastewater treatment plants. The 3D capsule (2.5 cm in length, 0.8 cm in diameter) physically separates the exoelectrogenic biofilm on the carbon cloth anode material from the natural microorganisms in the wastewater, while enabling the diffusion of nutrients through the capsule membrane. MECs based on the SBP anode (MEC-SBPs) and the MECs based on a nonencapsulated anode (MEC control) were fed with Geobacter medium supplied with acetate for 32 days, and then with artificial wastewater for another 46 days. The electrochemical activity, chemical oxygen demand (COD), bacterial anode viability and relative distribution on the MEC-SBP anode were compared with the MEC control. When the MECs were fed with artificial wastewater, the MEC-SBP produced (at −0.6 V) 1.70 ± 0.22 A m−2, twice that of the MEC control. The hydrogen evolution rates were 0.017 and 0.005 m3 m−3 day−1, respectively. The COD consumption rate for both was about the same at 650 ± 70 mg L−1. We assume that developing the encapsulated bacterial anode using the SBP technology will help overcome the problem of contamination by non-exoelectrogenic bacteria, as well as the shear and friction forces in wastewater plants.
Collapse
|
10
|
Jadhav DA, Park SG, Pandit S, Yang E, Ali Abdelkareem M, Jang JK, Chae KJ. Scalability of microbial electrochemical technologies: Applications and challenges. BIORESOURCE TECHNOLOGY 2022; 345:126498. [PMID: 34890815 DOI: 10.1016/j.biortech.2021.126498] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
During wastewater treatment, microbial electrochemical technologies (METs) are a promising means for in situ energy harvesting and resource recovery. The primary constraint for such systems is scaling them up from the laboratory to practical applications. Currently, most research (∼90%) has been limited to benchtop models because of bioelectrochemical, economic, and engineering design limitations. Field trials, i.e., 1.5 m3 bioelectric toilet, 1000 L microbial electrolysis cell and industrial applications of METs have been conducted, and their results serve as positive indicators of their readiness for practical applications. Multiple startup companies have invested in the pilot-scale demonstrations of METs for industrial effluent treatment. Recently, advances in membrane/electrode modification, understanding of microbe-electrode interaction, and feasibility of electrochemical redox reactions have provided new directions for realizing the practical application. This study reviews the scaling-up challenges, success stories for onsite use, and readiness level of METs for commercialization that is inexpensive and sustainable.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Division of Civil, Environmental Engineering and Logistics System (Environmental Major), College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra 431010, India
| | - Sung-Gwan Park
- Division of Civil, Environmental Engineering and Logistics System (Environmental Major), College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Mohammad Ali Abdelkareem
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, AlMinya, Egypt
| | - Jae-Kyung Jang
- National Institute of Agricultural Sciences, Department of Agricultural Engineering Energy and Environmental Engineering Division, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kyu-Jung Chae
- Division of Civil, Environmental Engineering and Logistics System (Environmental Major), College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
11
|
Chen TW, Kalimuthu P, Veerakumar P, Lin KC, Chen SM, Ramachandran R, Mariyappan V, Chitra S. Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review. Molecules 2022; 27:761. [PMID: 35164025 PMCID: PMC8915178 DOI: 10.3390/molecules27030761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size, shape, increased surface-to-volume ratio, and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties, such as significantly enhanced toughness, mechanical strength, and thermal/electrochemical conductivity. As a result of these advantages, nanocomposites have been used in a variety of applications, including catalysts, electrochemical sensors, biosensors, and energy storage devices, among others. This study focuses on the usage of several forms of carbon nanomaterials, such as carbon aerogels, carbon nanofibers, graphene, carbon nanotubes, and fullerenes, in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years, notably in the car industry, due to their cost-effectiveness, eco-friendliness, and long-cyclic durability. Further; we discuss the principles, reaction mechanisms, and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia;
| | - Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bio-electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan;
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidhya Nagar, T.P.K. Road, Madurai 625011, India
| | - Vinitha Mariyappan
- Electroanalysis and Bio-electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan;
| | - Selvam Chitra
- Department of Chemistry, Alagappa Government Arts College, Karaikudi 630003, India;
| |
Collapse
|