1
|
Singh S, Gummadi SN. Two-stage seeding strategy and its multi-response optimization for enhanced xylitol production by Debaryomyces nepalensis NCYC 3413. BIORESOURCE TECHNOLOGY 2024; 413:131469. [PMID: 39260726 DOI: 10.1016/j.biortech.2024.131469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The aim was to develop a two-stage seeding strategy and its optimization to enhance the conversion of xylose to xylitol by Debaryomyces nepalensis NCYC 3413. To develop efficient seed, multi-response optimization was employed to obtain optimal inoculum age and volume where xylitol concentration, yield and productivity were maximized. The optimal conditions of inoculation age and volume were 5.86 h and 11.66 % (v/v), respectively. Maximized results were observed at 48 h as compared to 72 h pre-optimization. Xylitol concentration slightly improved from 56 g/L to 59.71 g/L (p-value = 0.043). Yield improved from 0.56 g/g to 0.66 g/g (p-value = 0.044), whereas, productivity showed a significant increase from 0.76 g/L.h to 1.24 g/L.h (p-value = 0.008). Xylose Reductase activity improved by 1.67-folds and Xylitol Dehydrogenase activity decreased by 1.3 folds. This work suggests a simple inoculum strategy that could expedite the enzyme system required for xylitol production, enabling a 1.7-fold increase in productivity.
Collapse
Affiliation(s)
- Saivi Singh
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036, India.
| |
Collapse
|
2
|
Infante-Neta AA, de Carvalho ÁAO, D'Almeida AP, Gonçalves LRB, de Albuquerque TL. Xylitol production from passion fruit peel hydrolysate: Optimization of hydrolysis and fermentation processes. BIORESOURCE TECHNOLOGY 2024; 414:131628. [PMID: 39396579 DOI: 10.1016/j.biortech.2024.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The passion fruit peel (PFP) has a high cellulose and hemicellulose content, which can be used to produce fermentable sugars. In this context, this study aims to optimize the release of xylose and the production of xylitol from PFP. The optimized conditions were 0.71 M dilute sulfuric acid and a 21.84-minute treatment, yielding 19.03 g/L of xylose (PFP-1). Different PFP hydrolysates were evaluated to improve xylitol production by the yeast Kluyveromyces marxianus ATCC 36907: PFP-2 (PFP1 treated with Ca(OH)2), PFP-3 (PFP-1 treated with Ca(OH)2 and activated carbon), PFP-4 (PFP-3 with biological elimination of glucose with S. cerevisiae, and concentrated at different xylose concentrations). The applied methods resulted in higher xylitol production (14.97 g/L), when PFP hydrolysate was detoxified with Ca(OH)2, treated with activated charcoal for 1 h, biotreated for glucose removal, and concentrated to 40 g/L of xylose.
Collapse
Affiliation(s)
- Aida Aguilera Infante-Neta
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil
| | | | - Alan Portal D'Almeida
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| | | | - Tiago Lima de Albuquerque
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil.
| |
Collapse
|
3
|
Zhang XY, Zhao XM, Shi XY, Mei YJ, Ren XJ, Zhao XH. Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose. Biotechnol Lett 2024; 46:925-943. [PMID: 39340754 DOI: 10.1007/s10529-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Xylitol, as an important food additive and fine chemical, has a wide range of applications, including food, medicine, chemical, and feed. This review paper focuses on the research progress of xylitol biosynthesis, from overcoming the limitations of traditional chemical hydrogenation and xylose bioconversion, to the full biosynthesis of xylitol production using green and non-polluting glucose as substrate. In the review, the molecular strategies of wild strains to increase xylitol yield, as well as the optimization strategies and metabolic reconfiguration during xylitol biosynthesis are discussed. Subsequently, on the basis of existing studies, the paper further discusses the current status of research and future perspectives of xylitol production using glucose as a single substrate. The evolution of raw materials from xylose-based five-carbon sugars to glucose is not only cost-saving, but also safe and environmentally friendly, which brings new opportunities for the green industrial chain of xylitol.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China
| | - Xi-Min Zhao
- Zibo Occupational Disease Prevention and Control Hospital/Zibo Sixth People's Hospital, Shandong, China
| | - Xin-Yu Shi
- Zibo Product Quality Testing Research Institute, Shandong, China
| | - Ying-Jie Mei
- Zibo Institute for Food and Drug Control, Shandong, China
| | - Xiao-Jie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| | - Xin-He Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| |
Collapse
|
4
|
Feng J, Techapun C, Phimolsiripol Y, Rachtanapun P, Phongthai S, Khemacheewakul J, Taesuwan S, Porninta K, Htike SL, Mahakuntha C, Sommanee S, Nunta R, Kumar A, Leksawasdi N. Co-substrate model development and validation on pure sugars and corncob hemicellulosic hydrolysate for xylitol production. Sci Rep 2024; 14:25928. [PMID: 39472548 PMCID: PMC11522304 DOI: 10.1038/s41598-024-77462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
A co-substrate model of Candida tropicalis TISTR 5306 cultivated in 10 - 100 g/L xylose and 1 - 10 g/L glucose at the ratio of 10:1 was developed based in part on modified Monod equation. The kinetic parameters include substrate limitation as well as substrate and product inhibitions with inclusion of threshold values. A general good fitting with average RSStotal, R2, and MStotal values of 162, 0.979, and 10.8, respectively, was achieved between ten simulated profiles and experimental kinetics data. The implementation of developed model on xylitol production from non-detoxified corncob hemicellulosic hydrolysate resulted in relatively good agreement with RSStotal, R2, and MStotal values of 368, 0.988, and 24.5, respectively. The developed model can be applied to predict microbial behavior in batch xylitol production system using hemicellulosic hydrolysate over a xylose range of 10 - 100 g/L and provide useful information for subsequent design of fed-batch and continuous systems to achieve the efficient sustainable resource management of this agricultural and agro-industrial waste.
Collapse
Grants
- Juan feng(641355807) PhD's Degree Program in Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, under the CMU Presidential Scholarship.
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- CoE/RG66/67-P001 Center of Excellence in Agro-Bio-Circular-Green Industry (Agro-BCG)
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- FRB660046/0162, MHESI6309.FB2.1/707/2566 Thailand Science Research and Innovation
- N42A671052 Thailand Research Fund (TRF) Research Team Promotion Grant, RTA
- N42A671052 Thailand Research Fund (TRF) Research Team Promotion Grant, RTA
- C9CD71-155-387 CMU Proactive Researcher (Master Degree) Project
- C9CD71-155-387 CMU Proactive Researcher (Master Degree) Project
- PhD’s Degree Program in Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, under the CMU Presidential Scholarship.
Collapse
Affiliation(s)
- Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Suphat Phongthai
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kritsadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Anbarasu Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur, 613403, India
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
5
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
6
|
Singh AK, Pandey AK, Kumar M, Paul T, Gaur NA. Improved xylitol production by the novel inhibitor-tolerant yeast Candida tropicalis K2. ENVIRONMENTAL TECHNOLOGY 2024; 45:1-15. [PMID: 35762251 DOI: 10.1080/09593330.2022.2095227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Production of potential value-added products from different lignocellulosic biomass is becoming more common due to the availability of the feedstocks in abundance and the environment- friendly nature of the microbial production process. Due to the large array of its applications in the pharmaceutical and food sectors, xylitol is considered as potential value-added compound for production. In this study, organic waste samples were collected from various habitats and screened for potential yeast isolates for xylitol production. Among 124 tested isolates, Candida tropicalis K2 showed the highest potential for xylitol production as well as inhibitors tolerance (Furfural, 5-hydroxymethyl furfural and acetic acid) phenotypes. C. tropicalis K2 produced 90 g/L of xylitol in batch fermentation (100 g/L xylose supplemented with 20 g/L of glycerol as co-substrate) with the yield and productivity of 0.90 g/g and 1.5 g/L.h, respectively, at pH 5.5 and 30°C temperature. Together, >10% higher xylitol yield was achieved when glycerol was used as a co-substrate with pure xylose. Moreover, with non-detoxified corncob and Albizia pod hydrolysates, C. tropicalis K2 isolate produced 0.62 and 0.69 g/g of xylitol yields and 1.04 and 0.75 g/L.h xylitol productivities, respectively. Thus, C. tropicalis K2 isolate could be considered as promising candidate for xylitol production from different lignocellulosic biomass.HIGHLIGHTS Candia tropicalis K2 isolate was screened from natural sites of biomass degradation and characterized for xylitol production.Non-detoxified Albizia pod and corncob hydrolysates were explored for xylitol production using selected C. tropicalis K2 isolate.A maximum of 0.90 g/g yield and 1.07 g/L.h xylitol productivity was achieved with pure xylose.A >10% increase in xylitol yield was achieved using glycerol as a co-substrate.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ajay Kumar Pandey
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Life Sciences and Biotechnology, School of Biological Sciences and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tanushree Paul
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Naseem A Gaur
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Garmaroody ER, PahnehKolaei ND, Ramezani O, Hamedi S. Detoxification Approaches of Bagasse Pith Hydrolysate Affecting Xylitol Production by Rhodotorula mucilaginosa. Appl Biochem Biotechnol 2024; 196:129-144. [PMID: 37103733 DOI: 10.1007/s12010-023-04539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
In this study, the potential of bagasse pith (the waste of sugar and paper industry) was investigated for bio-xylitol production for the first time. Xylose-rich hydrolysate was prepared using 8% dilute sulfuric acid, at 120 °C for 90 min. Then, the acid-hydrolyzed solution was detoxified by individual overliming (OL), active carbon (AC), and their combination (OL+AC). The amounts of reducing sugars and inhibitors (furfural and hydroxyl methyl furfural) were measured after acid pre-treatment and detoxification process. Thereafter, xylitol was produced from detoxified hydrolysate by Rhodotorula mucilaginosa yeast. Results showed that after acid hydrolysis, the sugar yield was 20%. Detoxification by overliming and active carbon methods increased the reducing sugar content up to 65% and 36% and decreased the concentration of inhibitors to >90% and 16%, respectively. Also, combined detoxification caused an increase in the reducing sugar content (>73%) and a complete removal of inhibitors. The highest productivity of xylitol (0.366 g/g) by yeast was attained after the addition of 100 g/l non-detoxified xylose-rich hydrolysate into fermentation broth after 96 h, while the xylitol productivity enhanced to 0.496 g/g after adding the similar amount of xylose-rich hydrolysate detoxified by combined method (OL+AC2.5%).
Collapse
Affiliation(s)
- Esmaeil Rasooly Garmaroody
- Dept. of Bio-refinery, Faculty of New Technologies, Zirab Campus, Shahid Beheshti University, Savadkooh, Mazandaran, Iran
| | - Niloufar Davoodi PahnehKolaei
- Dept. of Bio-refinery, Faculty of New Technologies, Zirab Campus, Shahid Beheshti University, Savadkooh, Mazandaran, Iran
| | - Omid Ramezani
- Dept. of Bio-refinery, Faculty of New Technologies, Zirab Campus, Shahid Beheshti University, Savadkooh, Mazandaran, Iran.
| | - Sepideh Hamedi
- Dept. of Bio-refinery, Faculty of New Technologies, Zirab Campus, Shahid Beheshti University, Savadkooh, Mazandaran, Iran
| |
Collapse
|
8
|
Singh AK, Deeba F, Kumar M, Kumari S, Wani SA, Paul T, Gaur NA. Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery. Microb Cell Fact 2023; 22:201. [PMID: 37803395 PMCID: PMC10557352 DOI: 10.1186/s12934-023-02190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Xylitol has a wide range of applications in the pharmaceuticals, cosmetic, food and beverage industry. Microbial xylitol production reduces the risk of contamination and is considered as environment friendly and sustainable compared to the chemical method. In this study, random mutagenesis and genetic engineering approaches were employed to develop Candida tropicalis strains with reduced xylitol dehydrogenase (XDH) activity to eliminate co-substrate requirement for corn cob-based xylitol-ethanol biorefinery. RESULTS The results suggest that when pure xylose (10% w/v) was fermented in bioreactor, the Ethyl methane sulfonate (EMS) mutated strain (C. tropicalis K2M) showed 9.2% and XYL2 heterozygous (XYL2/xyl2Δ::FRT) strain (C. tropicalis K21D) showed 16% improvement in xylitol production compared to parental strain (C. tropicalis K2). Furthermore, 1.5-fold improvement (88.62 g/L to 132 g/L) in xylitol production was achieved by C. tropicalis K21D after Response Surface Methodology (RSM) and one factor at a time (OFAT) applied for media component optimization. Finally, corncob hydrolysate was tested for xylitol production in biorefinery mode, which leads to the production of 32.6 g/L xylitol from hemicellulosic fraction, 32.0 g/L ethanol from cellulosic fraction and 13.0 g/L animal feed. CONCLUSIONS This work, for the first time, illustrates the potential of C. tropicalis K21D as a microbial cell factory for efficient production of xylitol and ethanol via an integrated biorefinery framework by utilising lignocellulosic biomass with minimum waste generation.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Farha Deeba
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonam Kumari
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Shahid Ali Wani
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tanushree Paul
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naseem A Gaur
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Cox R, Narisetty V, Castro E, Agrawal D, Jacob S, Kumar G, Kumar D, Kumar V. Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:336-345. [PMID: 37209430 DOI: 10.1016/j.wasman.2023.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Lactic acid (LA) is a platform chemical with diverse industrial applications. Presently, commercial production of LA is dominated by microbial fermentation using sugary or starch-based feedstocks. Research pursuits emphasizing towards sustainable production of LA using non-edible and renewable feedstocks have accelerated the use of lignocellulosic biomass (LCB). The present study focuses on the valorisation of xylose derived from sugarcane bagasse (SCB) and olive pits (OP) through hydrothermal and dilute acid pretreatment, respectively. The xylose-rich hydrolysate obtained was used for LA production by homo-fermentative and thermophilic Bacillus coagulans DSM2314 strain under non-sterile conditions. The fed-batch mode of fermentation resulted in maximum LA titers of 97.8, 52.4 and 61.3 g/L with a yield of 0.77, 0.66 and 0.71 g/g using pure xylose, xylose-rich SCB and OP hydrolysates, respectively. Further, a two-step aqueous two-phase system (ATPS) extraction technique was employed for the separation and recovery of LA accumulated on pure and crude xylose. The LA recovery was 45 - 65% in the first step and enhanced to 80-90% in the second step.The study demonstrated an efficient integrated biorefinery approach to valorising the xylose-rich stream for cost-effective LA production and recovery.
Collapse
Affiliation(s)
- Rylan Cox
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus LasLagunillas, 23071 Jaén, Spain
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
10
|
Dasgupta D, Ahuja V, Singh R, More S, Mudliar S, Kumar M. Food-grade xylitol production from corncob biomass with acute oral toxicity studies. World J Microbiol Biotechnol 2023; 39:102. [PMID: 36797527 DOI: 10.1007/s11274-023-03542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Xylitol, a sugar substitute, is widely used in various food formulations and finds a steady global market. In this study, xylitol crystals were produced from corncob by fermentation (as an alternative to the chemical catalytic process) by a GRAS yeast Pichia caribbica MTCC 5703 and characterized in detail for their purity and presence of any possible contaminant that may adversely affect mammalian cell growth and proliferation. The acute and chronic oral toxicity trials demonstrated no gross pathological changes with average weekly weight gain in female Wistar rats at high xylitol loading (LD50 > 10,000 mg/kg body weight). The clinical chemistry analysis supported the evidence of no dose-dependent effect by analyzing blood biochemical parameters. The finding suggests the possible application of the crystals (> 98% purity) as a food-grade ingredient for commercial manufacture pending human trials.
Collapse
Affiliation(s)
- Diptarka Dasgupta
- Biochemistry & Biotechnology Area, CSIR-Indian Institute of Petroleum (CSIR-IIP), Dehradun, Uttarakhand, 248005, India. .,Academy of Scientific & Industrial Research (AcSIR), CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India.
| | - Vishal Ahuja
- Biochemistry & Biotechnology Area, CSIR-Indian Institute of Petroleum (CSIR-IIP), Dehradun, Uttarakhand, 248005, India
| | - Raghuvir Singh
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Snehal More
- Biochemical Sciences Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, Maharashtra, 411008, India
| | - Sandeep Mudliar
- Department Of Plant Cell Biotechnology, CSIR-Central Food Technology Research Institute, Mysore, 570001, India
| | - Madan Kumar
- Department of Biochemistry, CSIR-Central Food Technology Research Institute (CSIR-CFTRI), Mysore, 70001, India
| |
Collapse
|
11
|
Kaur P, Khatri M, Singh G, Selvaraj M, Assiri MA, Lalthazuala Rokhum S, Kumar Arya S, Jones S, Greff B, Woong Chang S, Ravindran B, Awasthi MK. Xylopentose production from crop residue employing xylanase enzyme. BIORESOURCE TECHNOLOGY 2023; 370:128572. [PMID: 36603755 DOI: 10.1016/j.biortech.2022.128572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
To produce xylo-oligosaccharides (XOS) from the agriculture waste, which included, green coconut and vegetable cocktail. The two pretreatment - hydrogen peroxide-acetic acid (HP-AC) and sodium hypochlorite-sodium hydroxide (SH-SH) - were used for this study. The optimal conditions for the pretreatment were 80 °C, 4.0 % NaClO, and 2 h, followed by 0.08 % NaOH, 55 °C, and 1 h. Further enzymatic hydrolysis of green coconut (GC) and vegetable cocktail (VC) were performed and found in case of GC, the best outcomes were observed. Different types of XOS were obtained from the treated biomass whereas a single type of XOS xylo-pentose was obtained in high quantity (96.44 % and 93.09 % from CG and VC respectively) with the production of other XOS < 2 %. This study presents a reasonably secure and economical method for turning secondary crop residue into XOS and fermentable sugars.
Collapse
Affiliation(s)
- Pritam Kaur
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China; Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, BIHER, Chennai 600100, India
| | - Babett Greff
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon- Si, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon- Si, Gyeonggi-Do 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
12
|
Barros KO, Alvarenga FBM, Magni G, Souza GFL, Abegg MA, Palladino F, da Silva SS, Rodrigues RCLB, Sato TK, Hittinger CT, Rosa CA. The Brazilian Amazonian rainforest harbors a high diversity of yeasts associated with rotting wood, including many candidates for new yeast species. Yeast 2023; 40:84-101. [PMID: 36582015 DOI: 10.1002/yea.3837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.
Collapse
Affiliation(s)
- Katharina O Barros
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Flávia B M Alvarenga
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giulia Magni
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele F L Souza
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Brazil
| | - Fernanda Palladino
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sílvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Rita C L B Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carlos A Rosa
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Shrivastava A, Pal M, Sharma RK. Pichia as Yeast Cell Factory for Production of Industrially Important Bio-Products: Current Trends, Challenges, and Future Prospects. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
14
|
Biological production of xylitol by using nonconventional microbial strains. World J Microbiol Biotechnol 2022; 38:249. [DOI: 10.1007/s11274-022-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
15
|
Deep Eutectic Solvent Pretreatment of Water Hyacinth for Improved Holocellulosic Saccharification and Fermentative Co-Production of Xylitol and Lipids Using Rhodosporidium toruloides NCIM 3547. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, delignification of water hyacinth (WH) using a mild ionic liquid-like chemical deep eutectic solvent (DES) synthesized using choline chloride and urea was conducted and the process parameters were optimized by Box–Behnken design (BBD)-based response surface methodology (RSM). From the results, a delignification of 64.32 ± 4.08% (w/w) was obtained under 1:12.5 (biomass:DES ratio), 4.63 h (time) and 87 °C (temperature). Further, a dilute sulphuric acid (2%, v/v) hydrolysis was carried out to destabilize the hemicellulose that resulted in 23.7 ± 0.50 g/L of xylose. Fermentation of the obtained xylose was carried out using a red oleaginous yeast, Rhodosporidium toruloides NCIM 3547, with free and Ca2+-alginate-immobilized cells for xylitol production under microaerophilic conditions and obtained yields of 4.73 ± 0.40 g/L (168 h) and 9.18 ± 0.10 g/L (packed bed reactor with a retention time of 18 h), respectively. Further, when the same fermentation was performed under aerobic conditions about 40.93 ± 0.73% lipid accumulation was observed with free cells. For saccharification, Aspergillus-niger-derived cellulase was used and this resulted in a yield of 27.45 ± 0.04 g/L of glucose. The glucose-enriched hydrolysate was supplemented for fermentation under nitrogen starved conditions from which 46.81 ± 2.60% (w/w) lipid content was obtained.
Collapse
|
16
|
An Integrated Process for the Xylitol and Ethanol Production from Oil Palm Empty Fruit Bunch (OPEFB) Using Debaryomyces hansenii and Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10102036. [PMID: 36296312 PMCID: PMC9610057 DOI: 10.3390/microorganisms10102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Oil palm empty fruit bunch (OPEFB) is the largest biomass waste from the palm oil industry. The OPEFB has a lignocellulose content of 34.77% cellulose, 22.55% hemicellulose, and 10.58% lignin. Therefore, this material’s hemicellulose and cellulose content have a high potential for xylitol and ethanol production, respectively. This study investigated the integrated microaerobic xylitol production by Debaryomyces hansenii and anaerobic ethanol semi simultaneous saccharification and fermentation (semi-SSF) by Saccharomyces cerevisiae using the same OPEFB material. A maximum xylitol concentration of 2.86 g/L was obtained with a yield of 0.297 g/gxylose. After 96 h of anaerobic fermentation, the maximum ethanol concentration was 6.48 g/L, corresponding to 71.38% of the theoretical ethanol yield. Significant morphological changes occurred in the OPEFB after hydrolysis and xylitol and ethanol fermentation were shown from SEM analysis.
Collapse
|
17
|
Aliyu I, Sapuan SM, Zainudin ES, Mohamed Yusoff MZ, Yahaya R, Aiza Jaafar CN. An overview of mechanical and corrosion properties of aluminium matrix composites reinforced with plant based natural fibres. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Many researchers have become more interested in utilizing plant based natural fibre as reinforcement for the fabrication of aluminium matrix composites (AMCs) in recent time. The utilization of these environmentally friendly and cost effective plant based natural fibre is necessitated to avoid environmental pollution. The desire for cost-effective and low-cost energy materials in automotive, biomedical, aerospace, marine, and other applications, however, is redefining the research environment in plant based natural fibre metal matrix composite materials. As a result, the goal of this review study is to investigate the impact of agricultural waste-based reinforcements on the mechanical properties and corrosion behaviour of AMCs made using various fabrication routes. Processing settings can be modified to produce homogenous structures with superior AMC characteristics, according to the findings. Plant based natural fibre ash reinforcing materials such as palm kernel shell ash, rice husk ash, sugarcane bagasse, bamboo stem ash, and corn cob ash can reduce AMCs density without sacrificing mechanical qualities. Furthermore, efficient utilization of plant based natural fibre reduces manufacturing costs and prevents environmental pollution, making it a sustainable material. Brittle composites
, unlike ceramic and synthetic reinforced composites, are not formed by plant based natural fibre reinforcements. As a result of our findings, plant based natural fibre AMCs have a high potential to replace expensive and hazardous ceramic and synthetic reinforced-AMCs, which can be used in a variety of automotive applications requiring lower cost, higher strength-to-weight ratio, and corrosion resistance.
Collapse
Affiliation(s)
- Isah Aliyu
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia
- Department of Metallurgical Engineering , Waziri Umaru Federal Polytechnic , Brinin Kebbi , Nigeria
| | - Salit Mohd Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia
- Laboratory of Biocomposite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 UPM , Serdang , Selangor , Malaysia
| | - Edi Syams Zainudin
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia
- Laboratory of Biocomposite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 UPM , Serdang , Selangor , Malaysia
| | - Mohd Zuhri Mohamed Yusoff
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia
- Laboratory of Biocomposite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 UPM , Serdang , Selangor , Malaysia
| | - Ridwan Yahaya
- Science and Technology Research Institute for Defence (STRIDE) , Kajang , Selangor , Malaysia
| | - Che Nor Aiza Jaafar
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia
| |
Collapse
|
18
|
Nagarajan S, Ranade VV. Pretreatment of milled and unchopped sugarcane bagasse with vortex based hydrodynamic cavitation for enhanced biogas production. BIORESOURCE TECHNOLOGY 2022; 361:127663. [PMID: 35872276 DOI: 10.1016/j.biortech.2022.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion can potentially valorise sugarcane bagasse to biogas and fertiliser. Pretreatment is however required to overcome recalcitrance and enhance the biogas yields. Literature reporting the investigation of various biomass pretreatments often use milled biomass as substrate rather than as-received fibrous biomass. This does not establish the true influence of the pretreatment type on biogas generation. Additionally, milling energy is also ignored when calculating net energy gains from enhanced biogas yields and are thus misleading. In this work, a vortex-based hydrodynamic cavitation device was used to enhance the biomethane yields from fibrous as-received biomass for the first time. Clear justification on why milled biomass must not be used as substrates for demonstrating the effect of pretreatment on biogas production is also discussed. The net energy gain from milled hydrodynamic cavitation pre-treated bagasse can be similar to as-received bagasse only when the specific milling energy is ≤700 kWh/ton.
Collapse
Affiliation(s)
- Sanjay Nagarajan
- School of Chemistry & Chemical Engineering, Queens University Belfast, BT9 5AG, UK; Sustainable Environment Research Centre, University of South Wales, CF37 4BB, UK
| | - Vivek V Ranade
- School of Chemistry & Chemical Engineering, Queens University Belfast, BT9 5AG, UK; Bernal Institute, University of Limerick, V94T9PX, Ireland.
| |
Collapse
|
19
|
Awasthi MK, Azelee NIW, Ramli ANM, Rashid SA, Manas NHA, Dailin DJ, Illias RM, Rajagopal R, Chang SW, Zhang Z, Ravindran B. Microbial biotechnology approaches for conversion of pineapple waste in to emerging source of healthy food for sustainable environment. Int J Food Microbiol 2022; 373:109714. [PMID: 35567891 DOI: 10.1016/j.ijfoodmicro.2022.109714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
One of the most significant and difficult jobs in food sustainability, is to make use of waste in the vegetable and fruit processing sectors. The discarded fruits along with their waste materials, is anticipated to have potential use for further industrial purposes via extraction of functional ingredients, extraction of bioactive components, fermentation. As a result of its abundant availability, simplicity and safe handling, and biodegradability, pineapple waste is now the subject of extensive research. It is regarded as a resource for economic development. This vast agro-industrial waste is being investigated as a low-cost raw material to produce a variety of high-value-added goods. Researchers have concentrated on the exploitation of pineapple waste, particularly for the extraction of prebiotic oligosaccharides as well as bromelain enzyme, and as a low-cost source of fibre, biogas, organic acids, phenolic antioxidants, and ethanol. Thus, this review emphasizes on pineapple waste valorisation approaches, extraction of bioactive and functional ingredients together with the advantages of pineapple waste to be used in many areas. From the socioeconomic perspective, pineapple waste can be a new raw material source to the industries and may potentially replace the current expensive and non-renewable sources. This review summarizes various approaches used for pineapple waste processing along with several important value-added products gained which could contribute towards healthy food and a sustainable environment.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng road 3#, Yangling, Shaanxi 712100, PR China.
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia.
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia; Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Siti Aishah Rashid
- Environmental Health Research Center, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health Malaysia, 40170 Shah Alam, Selangor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Daniel Joe Dailin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon-si, Gyeonggi-Do 16227, Republic of Korea
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Taicheng road 3#, Yangling, Shaanxi 712100, PR China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon-si, Gyeonggi-Do 16227, Republic of Korea.
| |
Collapse
|
20
|
Fermentation performance of a Mexican native Clavispora lusitaniae strain for xylitol and ethanol production from xylose, glucose and cellobiose. Enzyme Microb Technol 2022; 160:110094. [PMID: 35810624 DOI: 10.1016/j.enzmictec.2022.110094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
Abstract
Lignocellulose hydrolysates are rich in fermentable sugars such as xylose, cellobiose and glucose, with high potential in the biotechnology industry to obtain bioproducts of higher economic value. Thus, it is important to search for and study new yeast strains that co-consume these sugars to achieve better yields and productivity in the processes. The yeast Clavispora lusitaniae CDBB-L-2031, a native strain isolated from mezcal must, was studied under various culture conditions to potentially produce ethanol and xylitol due to its ability to assimilate xylose, cellobiose and glucose. This yeast produced ethanol under microaerobic conditions with yields of 0.451 gethanol/gglucose and 0.344 gethanol/gcellobiose, when grown on 1% glucose or cellobiose, respectively. In mixtures (0.5% each) of glucose:xylose and glucose:xylose:cellobiose the yields were 0.367 gethanol/gGX and 0. 380 gethanol/gGXC, respectively. Likewise, in identical conditions, C. lusitaniae produced xylitol from xylose with a yield of 0.421 gxylitol/gxylose. In 5% glucose or xylose, this yeast had better ethanol and xylitol titers and yields, respectively. However, glucose negatively affected xylitol production in the mixture of both sugars (3% each), producing only ethanol. Xylose reductase (XR) and xylitol dehydrogenase (XDH) activities were evaluated in cultures growing on xylose or glucose, obtaining the highest values in cultures on xylose at 8 h (25.9 and 6.22 mU/mg, respectively). While in glucose cultures, XR and XDH activities were detected once this substrate was consumed (4.06 and 3.32 mU/mg, respectively). Finally, the XYL1 and XYL2 genes encoding xylose reductase and xylitol dehydrogenase, respectively, were up-regulated by xylose, whereas glucose down-regulated their expression.
Collapse
|
21
|
Awasthi MK, Tarafdar A, Gaur VK, Amulya K, Narisetty V, Yadav DK, Sindhu R, Binod P, Negi T, Pandey A, Zhang Z, Sirohi R. Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. Int J Food Microbiol 2022; 368:109610. [PMID: 35278799 DOI: 10.1016/j.ijfoodmicro.2022.109610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
Oligosaccharides are the sugars made up of 3-10 saccharides units and one of the classes of prebiotics obtained from various biowastes. These biowastes could include rice straw, husk, spent coffee grounds, sugarcane bagasse, spent tea leaves, fruits and vegetables peel, corn stalk, corn stover, deoiled meals and brewer's spent grains etc., which can be used as a resource for oligosaccharides production. This review aims to provide a comprehensive overview of the suitability of different biowaste resources for oligosaccharide production followed by critical analysis of the recent updates and production methods. The review also discusses the tremendous prebiotic potential of oligosaccharides in food applications with prospects for further advancements in the field.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - K Amulya
- Bioengineering and Environmental Sciences (BEES), Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500047, India
| | - Vivek Narisetty
- Innovation Centre, Gallows Hill, Warwick CV34 6UW, United Kingdom
| | - Dheeraj Kumar Yadav
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India; Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Taru Negi
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.
| | - Ranjna Sirohi
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, 9 Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
22
|
Pant S, Prakash A, Kuila A. Integrated production of ethanol and xylitol from Brassica juncea using Candida sojae JCM 1644. BIORESOURCE TECHNOLOGY 2022; 351:126903. [PMID: 35227916 DOI: 10.1016/j.biortech.2022.126903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The present study demonstrates a novel strategy involving two-step fermentation of lignocellulosic hydrolysate for the integrated production of ethanol and xylitol using a newly isolated yeast strain, Candida sojae JCM 1644. The isolated strain was characterised by its carbohydrate assimilation efficiency and tolerance towards inhibitors generated during pretreatment and fermentation of lignocellulosic biomass. In brief, the study comprised alkali treatment of Brassica juncea followed by its saccharification with cellulase consortia. An isolated strain was used for the co-production of xylitol and ethanol from sugar hydrolysate, and several parameters were systematically optimised for maximum co-production of ethanol and xylitol. Out of total glucose (149.72 g/L) and xylose (84.21 g/L) present in biomass hydrolysate, a product yield of 0.45 g/g (ethanol) and 0.62 g/g (xylitol) was achieved for a two-step fermentation process, which was 15.57% and 11.78% higher than the yield achieved for ethanol and xylitol, respectively, in a one-step fermentation process.
Collapse
Affiliation(s)
- Shailja Pant
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anand Prakash
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Arindam Kuila
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
23
|
Cruz Reina LJ, Durán-Aranguren DD, Forero-Rojas LF, Tarapuez-Viveros LF, Durán-Sequeda D, Carazzone C, Sierra R. Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon 2022; 8:e09528. [PMID: 35663750 PMCID: PMC9156865 DOI: 10.1016/j.heliyon.2022.e09528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cashew nut production generates large amounts of cashew apple as residue. In Colombia, cashew cultivation is increasing together with the concerns on residue management. The objective of this study was to provide the first chemical, physical and thermal decomposition characterization of cashew apple from Colombian varieties harvested in Vichada, Colombia. This characterization was focused to identify the important bioactive and natural compounds that can be further valorized in the formulation of food, nutraceuticals, and pharmacological products. The results obtained in this study are helpful to portray the cashew apple as a potential by-product due to its renewable nature and valuable composition, instead of seeing it just as an agricultural residue. For that, cashew apples of Regional 8315 and Mapiria varieties were studied. The natural juice (cashew apple juice) that was extracted from the cashew apples and the remanent solids (cashew apple bagasse) were separately analyzed. The HPLC analytical technique was used to determine the concentration of bioactive compounds, structural carbohydrates, and soluble sugars that constitute this biomass. Spectrophotometric techniques were used to determine the concentration of tannins, carotenoids, and total polyphenols. Mineral content and antioxidant activity (DPPH and ABTS assays) were determined in the biomass. Also, the thermal decomposition under an inert atmosphere or pyrolysis was performed on cashew apple bagasse. The varieties of cashew apple studied in this work showed similar content of bioactive compounds, total phenolic content, and structural carbohydrates. However, the Mapiria variety showed values slightly higher than the Regional 8315. Regarding cashew apple juice, it is rich in tannins and ascorbic acid with values of 191 mg/100 mL and 70 mg/100 mL, respectively, for Mapiria variety. Additionally, the principal reservoir of bioactive compounds and constitutive carbohydrates was the cashew apple bagasse. About 50 wt.% of it was composed of cellulose and hemicellulose. Also, in the bagasse, the ascorbic acid content was in a range of 180–200 mg/100 g, which is higher than other fruits and vegetables. Moreover, alkaloids were identified in cashew apples. The maximum value of antioxidant activity (DPPH assay: 405 TEs/g) was observed in the bagasse of Mapiria variety. The bagasse thermal decomposition started around 150 °C when the structural carbohydrates and other constitutive substances started to degrade. After thermogravimetric analysis, a remanent of 20% of the initial weight suggested the formation of a rich-carbon solid, which could correspond to biochar. Therefore, the cashew apple harvested in Vichada is a valuable reservoir of a wide range of biomolecules that potentially could be valorized into energy, foods, and pharmacologic applications. Nevertheless, future work is necessary to describe the complex compounds of this residual biomass that are still unknown.
Collapse
Affiliation(s)
- Luis J. Cruz Reina
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
- Corresponding author.
| | - Daniel David Durán-Aranguren
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Laura Fernanda Forero-Rojas
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Luisa Fernanda Tarapuez-Viveros
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Dinary Durán-Sequeda
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Rocío Sierra
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| |
Collapse
|
24
|
Yan Q, Han L, Liu X, You C, Zhou S, Zhou Z. Development of an auto-inducible expression system by nitrogen sources switching based on the nitrogen catabolite repression regulation. Microb Cell Fact 2022; 21:73. [PMID: 35484589 PMCID: PMC9047365 DOI: 10.1186/s12934-022-01794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The construction of protein expression systems is mainly focused on carbon catabolite repression and quorum-sensing systems. However, each of these regulatory modes has an inherent flaw, which is difficult to overcome. Organisms also prioritize using different nitrogen sources, which is called nitrogen catabolite repression. To date, few gene regulatory systems based on nitrogen catabolite repression have been reported. RESULTS In this study, we constructed a nitrogen switching auto-inducible expression system (NSAES) based on nitrogen catabolite regulation and nitrogen utilization in Aspergillus nidulans. The PniaD promoter that is highly induced by nitrate and inhibition by ammonia was used as the promoter. Glucuronidase was the reporter protein. Glucuronidase expression occurred after ammonium was consumed in an ammonium and nitrate compounding medium, achieving stage auto-switching for cell growth and gene expression. This system maintained a balance between cell growth and protein production to maximize stress products. Expressions of glycosylated and secretory proteins were successfully achieved using this auto-inducible system. CONCLUSIONS We described an efficient auto-inducible protein expression system based on nitrogen catabolite regulation. The system could be useful for protein production in the laboratory and industrial applications. Simultaneously, NSAES provides a new auto-inducible expression regulation mode for other filamentous fungi.
Collapse
Affiliation(s)
- Qin Yan
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinyue Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cuiping You
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
25
|
Dasgupta D, Sidana A, Sarkar B, More S, Ghosh D, Bhaskar T, Ray A. Process development for crystalline xylitol production from corncob biomass by Pichia caribbica. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Lekshmi Sundar MS, Madhavan Nampoothiri K. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. BIORESOURCE TECHNOLOGY 2022; 345:126548. [PMID: 34906704 DOI: 10.1016/j.biortech.2021.126548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Xylose, the most abundant pentose sugar of the hemicellulosic fraction of lignocellulosic biomass, has to be utilized rationally for the commercial viability of biorefineries. An effective pre-treatment strategy for the release of xylose from the biomass and an appropriate microbe of the status of an Industrial strain for the utilization of this pentose sugar are key challenges which need special attention for the economic success of the biomass value addition to chemicals. Xylitol and xylonic acid, the alcohol and acid derivatives of xylose are highly demanded commodity chemicals globally with plenty of applications in the food and pharma industries. This review emphasis on the natural and metabolically engineered strains utilizing xylose and the progressive and innovative fermentation strategies for the production and subsequent recovery of the above said chemicals from pre-treated biomass medium.
Collapse
Affiliation(s)
- M S Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
27
|
Oreoluwa Jokodola E, Narisetty V, Castro E, Durgapal S, Coulon F, Sindhu R, Binod P, Rajesh Banu J, Kumar G, Kumar V. Process optimisation for production and recovery of succinic acid using xylose-rich hydrolysates by Actinobacillus succinogenes. BIORESOURCE TECHNOLOGY 2022; 344:126224. [PMID: 34751156 PMCID: PMC8683751 DOI: 10.1016/j.biortech.2021.126224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
Succinic acid (SA) is a top platform chemical obtainable from biomass. The current study evaluated the potential of Actinobacillus succinogenes for SA production using xylose-rich hemicellulosic fractions of two important lignocellulosic feedstocks, olive pits (OP) and sugarcane bagasse (SCB) and the results were compared with pure xylose. Initial experiments were conducted in shake flask followed by batch and fed-batch cultivation in bioreactor. Further separation of SA from the fermented broth was carried out by adapting direct crystallisation method. During fed-batch culture, maximum SA titers of 36.7, 33.6, and 28.7 g/L was achieved on pure xylose, OP and SCB hydrolysates, respectively, with same conversion yield of 0.27 g/g. The recovery yield of SA accumulated on pure xylose, OP and SCB hydrolysates was 79.1, 76.5, and 75.2%, respectively. The results obtained are of substantial value and pave the way for development of sustainable SA biomanufacturing in an integrated biorefinery.
Collapse
Affiliation(s)
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Sumit Durgapal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
28
|
Ni J, Di J, Ma C, He YC. Valorisation of corncob into furfuryl alcohol and furoic acid via chemoenzymatic cascade catalysis. BIORESOUR BIOPROCESS 2021; 8:113. [PMID: 38650293 PMCID: PMC10991097 DOI: 10.1186/s40643-021-00466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous tin-based sulfonated graphite (Sn-GP) catalyst was prepared with graphite as carrier. The physicochemical properties of Sn-GP were captured by FT-IR, XRD, SEM and BET. Organic acids with different pKa values were used to assist Sn-GP for transforming corncob (CC), and a linear equation (Furfural yield = - 7.563 × pKa + 64.383) (R2 = 0.9348) was fitted in acidic condition. Using sugarcane bagasse, reed leaf, chestnut shell, sunflower stalk and CC as feedstocks, co-catalysis of CC (75.0 g/L) with maleic acid (pKa = 1.92) (0.5 wt%) and Sn-GP (3.6 wt%) yielded the highest furfural yield (47.3%) for 0.5 h at 170 °C. An effective furfural synthesis was conducted via co-catalysis with Sn-GP and maleic acid. Subsequently, E. coli CG-19 and TS completely catalyzed the conversion of corncob-derived FAL to furfurylalcohol and furoic acid, respectively. Valorisation of available renewable biomass to furans was successfully developed in tandem chemoenzymatic reaction.
Collapse
Affiliation(s)
- Jiacheng Ni
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmacy, Changzhou University, Changzhou, China
| | - Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmacy, Changzhou University, Changzhou, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmacy, Changzhou University, Changzhou, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|