1
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
2
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Zhang X, Lu Q. Cultivation of microalgae in food processing effluent for pollution attenuation and astaxanthin production: a review of technological innovation and downstream application. Front Bioeng Biotechnol 2024; 12:1365514. [PMID: 38572356 PMCID: PMC10987718 DOI: 10.3389/fbioe.2024.1365514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Valorization of food processing effluent (FPE) by microalgae cultivation for astaxanthin production is regarded as a potential strategy to solve the environmental pollution of food processing industry and promote the development of eco-friendly agriculture. In this review paper, microalgal species which have the potential to be employed for astaxanthin in FPE were identified. Additionally, in terms of CO2 emission, the performances of microalgae cultivation and traditional methods for FPE remediation were compared. Thirdly, an in-depth discussion of some innovative technologies, which may be employed to lower the total cost, improve the nutrient profile of FPE, and enhance the astaxanthin synthesis, was provided. Finally, specific effects of dietary supplementation of algal astaxanthin on the growth rate, immune response, and pigmentation of animals were discussed. Based on the discussion of this work, the cultivation of microalgae in FPE for astaxanthin production is a value-adding process which can bring environmental benefits and ecological benefits to the food processing industry and agriculture. Particularly, technological innovations in recent years are promoting the shift of this new idea from academic research to practical application. In the coming future, with the reduction of the total cost of algal astaxanthin, policy support from the governments, and further improvement of the innovative technologies, the concept of growing microalgae in FPE for astaxanthin will be more applicable in the industry.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
4
|
Esteves AF, Gonçalves AL, Vilar VJ, Pires JCM. Comparative assessment of microalgal growth kinetic models based on light intensity and biomass concentration. BIORESOURCE TECHNOLOGY 2024; 394:130167. [PMID: 38101550 DOI: 10.1016/j.biortech.2023.130167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The comprehensive evaluation and validation of mathematical models for microalgal growth dynamics are essential for improving cultivation efficiency and optimising photobioreactor design. A considerable gap in comprehending the relation between microalgal growth, light intensity and biomass concentration arises since many studies focus solely on associating one of these factors. This paper compares microalgal growth kinetic models, specifically focusing on the combined impact of light intensity and biomass concentration. Considering a dataset (experimental results and literature values) concerning Chlorella vulgaris, nine kinetic models were assessed. Bannister and Grima models presented the best fitting performance to experimental data (RMSE ≤ 0.050 d-1; R2≥0.804; d2≥0.943). Cultivation conditions conducting photoinhibition were identified in some kinetic models. After testing these models on independent datasets, Bannister and Grima models presented superior predictive performance (RMSE = 0.022-0.023 d-1; R2 = 0.878-0.884; d2: 0.976-0.975). The models provide valuable tools for predicting microalgal growth and optimising operational parameters, reducing the need for time-consuming and costly experiments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
5
|
Pereira RN, Jaeschke DP, Marczak LDF, Rech R, Mercali GD. Effect of ultrasound on Pseudoneochloris marina and Chlorella zofingiensis growth. BIORESOURCE TECHNOLOGY 2023; 373:128741. [PMID: 36791976 DOI: 10.1016/j.biortech.2023.128741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The present work evaluated the ultrasound (US) effects on the growth of Pseudoneochloris marina and Chlorella zofingiensis. For P. marina, US treatment did not increase cell proliferation and reduced cell density when used for 60 min (exponential phase, for 5 days), indicating a possible occurrence of cell damage. For C. zofingiensis, the application of discontinuous US for 10 min resulted in an increase of 65 % in biomass concentration compared to the control. These distinct behaviors indicate that microalgae species react differently to physical stimuli. After US treatment, a reduction of carotenoid, chlorophyll, lipid and protein concentrations was observed, which may be related to changes in the metabolic pathways to produce these compounds. Overall, the results of the present study show the potential of discontinuous US to enhance microalgae cell proliferation.
Collapse
Affiliation(s)
- Renata Nunes Pereira
- Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Engenheiro Luiz Englert Street, Porto Alegre, RS 90040-040, Brazil
| | - Débora Pez Jaeschke
- College of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Ligia Damasceno Ferreira Marczak
- Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Engenheiro Luiz Englert Street, Porto Alegre, RS 90040-040, Brazil
| | - Rosane Rech
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Bento Gonçalves Avenue, 9500, Porto Alegre, RS 91501-970, Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Bento Gonçalves Avenue, 9500, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
6
|
Zarekarizi A, Hoffmann L, Burritt DJ. The potential of manipulating light in the commercial production of carotenoids from algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
The efficiency of microalgae-based remediation as a green process for industrial wastewater treatment. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Amin Vieira da Costa NP, Libardi N, Ribeiro da Costa RH. How can the addition of extracellular polymeric substances (EPS)-based bioflocculant affect aerobic granular sludge (AGS)? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114807. [PMID: 35231689 DOI: 10.1016/j.jenvman.2022.114807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The ability of extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) to act as bioflocculant was tested in a pilot-scale sequencing batch reactor (SBR), fed with low-strength municipal wastewater. EPS were compared with the addition of Na-alginate as a standardized biopolymer. The optimal dosage of both biopolymers was determined through jar-test assays (400 mg L-1 of Na-alginate in a 250 mg Ca L-1 and 50 mg L-1 of EPS in pH of 2 ± 0.2). The addition of Na-alginate (Operational Period I- OP-I) and EPS (Operational Period II - OP-II) led to increased adhesion of particles with 2.9 ± 0.45 and 1.3 ± 0.3 g TSS L-1 during OP-I and OP-II, respectively, and fast settling biomass (SVI30 between 68 and 78 mL g-1). Granule predominance occurred at early stages of OP-I (day 37) and OP-II (day 44), presenting diameters mainly within the 212-600 μm range. The reactor showed removal efficiencies of 85% for biochemical oxygen demand (BOD) and above 50% for N-NH4 during the study periods. Furthermore, the addition of EPS as a bioflocculant promoted a substantial increase in polysaccharides (PS = 153.01 ± 121 mg gVSS-1) and proteins (PN = 121.96 ± 69 mg gVSS-1), while the addition of Na-alginate affected mostly the PS content (87 ± 24 mg gVSS-1). The microbial community shifted mainly from Betaproteobacteria (45%) during OP-I to Alphaproteobacteria (64%) in OP-II. Therefore, EPS affected both physical-chemical and microbial features of the AGS biomass without any change in treatment efficiencies. EPS is a promising resource to be recovered from aerobic granular sludge and to be used as an alternative and sustainable bioflocculant.
Collapse
Affiliation(s)
| | - Nelson Libardi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina - UFSC, 88040-970, Florianópolis, Brazil.
| | - Rejane Helena Ribeiro da Costa
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina - UFSC, 88040-970, Florianópolis, Brazil
| |
Collapse
|
11
|
Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. FERMENTATION 2022. [DOI: 10.3390/fermentation8040179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Haematococcus lacustris (formerly called Haematococcus pluvialis) is regarded as the most promising microalgae for the production of natural astaxanthin, which is secondary metabolism used as a dietary supplement, also for cosmetic applications, due to its high anti-oxidant activity. Astaxanthin has a wide range of biological activities and high economic potential, and currently dominates the market in its synthetic form. Furthermore, because of the difficulty of bioprocess and the high cost of cultivation, astaxanthin extracted from this microalga is still expensive due to its low biomass and pigment productivities. Large-scale biomass production in biotechnological production necessitates the processing of a large number of cultures as well as the use of both indoor and outdoor systems, such as open pond raceway systems and photo-bioreactors (PBR). The photo-bioreactors systems are suitable for mass production because growth conditions can be controlled, and the risk of contamination can be reduced to a certain extent and under specific culture parameters. This review discusses current technologies being developed to improve cultivation and operation efficiency and profitability, as well as the effect of parameter factors associated with H. lacustris cultivation on biomass and astaxanthin bioproduction, and even strategies for increasing bioproduction and market potential for H. lacustris astaxanthin.
Collapse
|