1
|
Wani AK, Qadir F, Elboughdiri N, Rahayu F, Saefudin, Pranowo D, Martasari C, Kosmiatin M, Suhara C, Sudaryono T, Prayogo Y, Yadav KK, Muzammil K, Eltayeb LB, Alreshidi MA, Singh R. Metagenomics and plant-microbe symbioses: Microbial community dynamics, functional roles in carbon sequestration, nitrogen transformation, sulfur and phosphorus mobilization for sustainable soil health. Biotechnol Adv 2025; 82:108580. [PMID: 40246210 DOI: 10.1016/j.biotechadv.2025.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Biogeochemical cycles are fundamental processes that regulate the flow of essential elements such as carbon, nitrogen, and phosphorus, sustaining ecosystem productivity and global biogeochemical equilibrium. These cycles are intricately influenced by plant-microbe symbioses, which facilitate nutrient acquisition, organic matter decomposition, and the transformation of soil nutrients. Through mutualistic interactions, plants and microbes co-regulate nutrient availability and promote ecosystem resilience, especially under environmental stress. Metagenomics has emerged as a transformative tool for deciphering the complex microbial communities and functional genes driving these cycles. By enabling the high-throughput sequencing and annotation of microbial genomes, metagenomics provides unparalleled insights into the taxonomic diversity, metabolic potential, and functional pathways underlying microbial contributions to biogeochemical processes. Unlike previous reviews, this work integrates recent advancements in metagenomics with complementary omics approaches to provide a comprehensive perspective on how plant-microbe interactions modulate biogeochemical cycles at molecular, genetic, and ecosystem levels. By highlighting novel microbial processes and potential biotechnological applications, this review aims to guide future research in leveraging plant-microbe symbioses for sustainable agriculture, ecosystem restoration, and climate change mitigation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India.
| | - Fayzan Qadir
- Department of Civil Engineering, Engineering & Technology, Jamia Millia Islamia-Jamia Nagar, New Delhi 110025, India
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Saefudin
- Research Center for Estate Crop, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Dibyo Pranowo
- Research Center for Estate Crop, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Chaireni Martasari
- Research Center for Horticulture, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Mia Kosmiatin
- Research Center for Horticulture, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Cece Suhara
- Research Center for Estate Crop, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Tri Sudaryono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Yusmani Prayogo
- Food Crops Research Center, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai -602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, Abha 62561, Saudi Arabia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Maha Awjan Alreshidi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81441, Saudi Arabia
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India
| |
Collapse
|
2
|
Wan D, Shen Z, Shi N, Wang J, Zhang W, Shi Y, Wang P, He Q. S 0-dependent bio-reduction for antimonate detoxification from wastewater by an autotrophic bioreactor with internal recirculation. Biodegradation 2024; 36:1. [PMID: 39441247 DOI: 10.1007/s10532-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Elemental sulfur (S0) autotrophic reduction is a promising approach for antimonate [Sb(V)] removal from water; however, it is hard to achieve effective removal of total antimony (TSb). This study established internal recirculation in an S0 autotrophic bioreactor (SABIR) to enhance TSb removal from Sb(V)-contaminated water. Complete Sb(V) reduction (10 mg/L) with bare residual Sb(III) (< 0.26 mg/L) was achieved at hydraulic retention time (HRT) = 8 h. Shortening HRT adversely affected the removal efficiencies of Sb(V) and TSb; meanwhile, an increased reflux ratio was conducive to Sb(V) and TSb removal at the same HRT. Sulfur disproportionation occurred in the SABIR and was the primary source for SO42- generation and alkalinity consumption. The alkalinity consumption decreased with the shortening HRT and increased with an increased reflux ratio at the same HRT. The generated SO42- was significantly higher (50-100 times) than the theoretical value for Sb(V) reduction. Coefficient of variation (CV), first-order kinetic models, and osmolality analyses showed that internal recirculation did not significantly affect the stability of SABIR but contributed to enhancing TSb removal by increasing mass transfer and reflowing generated sulfide back to the SABIR. SEM-EDS, Raman spectroscopy, XRD and XPS analyses identified that the precipitates in the SABIR were Sb2S3 and Sb-S compounds. In addition, high-throughput sequencing analysis revealed the microbial community structure's temporal and spatial distribution in the SABIR. Dominant genera, including unclassified-Proteobacteria (18.72-38.99%), Thiomonas (0.94-4.87%) and Desulfitobacterium (1.18-2.75%) might be responsible for Sb(V) bio-reduction and removal. This study provides a strategy to remove Sb from water effectively and supports the theoretical basis for the practical application of the SABIR in Sb(V)-contaminated wastewater.
Collapse
Affiliation(s)
- Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou, 450001, Henan, China
| | - Zhan Shen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Naiyuan Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiekai Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Weichao Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Panting Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China.
- Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Li Z, Cheng Y, Zeng M, Luo Y, Hou Y, Wu J, Nie J, Long B. Effect of in situ ultrasonic wave and influent ammonia nitrogen fluctuation on stability of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:4791-4804. [PMID: 38008972 DOI: 10.1080/09593330.2023.2283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
This study elucidates the impact of fluctuating influent conditions and in situ ultrasonic wave exposure on the stability of aerobic granular sludge (AGS) in the treatment of simulated wastewater emanating from rare earth mining operations. During a stable influent period spanning from Day 1 to Day 95, the seed granules underwent an initial disintegration followed by a re-granulation phase. The secondary granulation was achieved on Day 80 and Day 40 for the ultrasonic reactor (R1) and the control reactor (R2), respectively. Notably, granules formed in R1 exhibited a more porous structure compared to those generated in R2. Subsequently, when the ammonia nitrogen in the influent oscillated between 100 and 500 mg/L during Days 96-140, both reactors yielded compact and densely structured granules. Nitrogen removal profiles were comparable between the two reactors: the removal efficiencies for ammonia nitrogen and total inorganic nitrogen escalated from 95% and 80%, respectively, during Days 1-95, to 95% and 90%, respectively, post-Day 140. A suite of performance metrics indicated that steady-state granules from R1 outperformed those from R2 across several parameters. Specifically, the nitrification/denitrification rates, and relative abundance of denitrifying bacteria were all higher in granules from R1. Conversely, the relative abundance of nitrifying bacteria was comparable between granules from both reactors. However, R1 granules demonstrated lower sludge concentration and smaller average particle size than their R2 counterparts. In conclusion, the AGS system demonstrated robust resilience to fluctuating ammonia nitrogen, and the application of ultrasonic waves significantly enhanced granular activity while achieving in situ sludge reduction.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yuanyuan Cheng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Mingjing Zeng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yi Luo
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yiran Hou
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, People's Republic of China
| | - Jiale Nie
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Bei Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| |
Collapse
|
4
|
Zhang S, Gao J, Cai C, Chen J, Li Y, Su X, Sun F, Ye W, Zhang M, Wu S, Yu L, Yu S. Advanced nitrogen removal of sulfur-driven autotrophic denitrification from landfill leachate after partial nitrification and denitrification pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121877. [PMID: 39018860 DOI: 10.1016/j.jenvman.2024.121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Sulfur-driven autotrophic denitrification (S0dAD) was employed to remove residual nitrogen from the biological effluent of landfill leachate after partial nitrification and denitrification pretreatment. The performance of S0dAD were assessed with various NOx--N (NO2--N and NO3--N) loadings over a 185-day operational period. The results demonstrated that a notable NOx--N removal efficiency of 97.8 ± 2.0% was achieved under nitrogen removal rates of 0.12 ± 0.02 kg N/(m3· d), leading to total nitrogen concentrations of 8.6 ± 3.8 mg/L in the effluent. Batch experiments revealed competitive utilization of nitrogenous electron acceptors, with NO2--N demonstrating 2-4 times higher denitrification rates than NO3--N under coexistence conditions. Genus-level microbial community identified that Thiobacillus and Sulfurovum was highly enriched with as key denitrifying bacteria in the S0dAD system. These findings provide insights for advanced nitrogen removal coupling S0dAD with partial nitrification and denitrification process for landfill leachate treatment.
Collapse
Affiliation(s)
- Shusheng Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Junliang Gao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chuanyu Cai
- Zhejiang Huge Waste Management Co. Ltd, Hangzhou, 311113, China
| | - Jingjing Chen
- Zhejiang Haihe Environmental Technology Co. Ltd, Jinhua, 321017, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wenjing Ye
- Longquan Conservation Center of Qianjiangyuan-Baishanzu National Park, Longquan, 323799, China
| | - Meng Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Songwei Wu
- College of Civil Engineering and Architecture, Quzhou University, Quzhou, 324000, China
| | - Liyan Yu
- College of Civil Engineering and Architecture, Quzhou University, Quzhou, 324000, China
| | - Shengwu Yu
- Longquan Conservation Center of Qianjiangyuan-Baishanzu National Park, Longquan, 323799, China.
| |
Collapse
|
5
|
Zeng M, Li Z, Cheng Y, Luo Y, Hou Y, Wu J, Long B. Stability of aerobic granular sludge for treating inorganic wastewater with different nitrogen loading rates. ENVIRONMENTAL TECHNOLOGY 2024; 45:3898-3911. [PMID: 37470502 DOI: 10.1080/09593330.2023.2237656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
This paper investigated the effect of nitrogen loading rates (NLRs) on the stability of aerobic granular sludge (AGS) for treating simulated ionic rare earth mine wastewater with high ammonia nitrogen and extremely low organic content. Mature AGS from a sequencing batch reactor (SBR) was seeded into five identical SBRs (R1, R2, R3, R4 and R5). The five reactors were operated with different NLRs (0.2, 0.4, 0.8, 1.2 and 1.6 kg/m3·d). After 30 days of operation, R1, R2 and R5 were dominated by broken granules, while most of the granules in R3 and R4 still maintained a complete structure. The properties of granules from R1, R2, R3, R4 and R5 deteriorated to varying degrees, while the granules from R3 and R4 showed better stability than that from R1, R2 and R5. In R1, R2, R3 and R4, the steady-state ammonia nitrogen removal efficiencies were all greater than 90%, and the steady-state removal efficiencies of total inorganic nitrogen (TIN) were approximately 30%. In R5, the removal efficiencies of ammonia nitrogen and TIN were both approximately 70%. The dominant nitrifying and denitrifying bacterial genera of the granules from the five reactors were Nitrosomonas and Thauera, respectively, and their relative abundance was much higher in granules from R3 and R4. The results demonstrated that a relative equilibrium between the growth and metabolism of nitrifying/denitrifying bacteria was achieved when NLR was between 0.8 and 1.2 kg/m3·d, which could provide technical support for the stability maintenance of AGS in the treatment of ionic rare earth mine wastewater.
Collapse
Affiliation(s)
- Mingjing Zeng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Zhenghao Li
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yuanyuan Cheng
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yi Luo
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yiran Hou
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, People's Republic of China
| | - Bei Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| |
Collapse
|
6
|
Liu X, Liu Q, Sheng Y. Nutrients in overlying water affect the environmental behavior of heavy metals in coastal sediments. ENVIRONMENTAL RESEARCH 2023; 238:117135. [PMID: 37714367 DOI: 10.1016/j.envres.2023.117135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Excessive nutrients in aquatic ecosystems are the main driving factors for eutrophication and water quality deterioration. However, the influence of nutrients in overlying water on sediment heavy metals is not well understood. In this study, the effects of nitrate nitrogen (NO3-N) addition and phosphate addition in the overlying water on the environmental behaviors of chromium (Cr), copper (Cu), and cadmium (Cd) in coastal river sediments were investigated. Fresh estuary sediments and synthetic saltwater were used in microcosm studies conducted for 13 d. To determine the biological effect, unsterilized and sterilized treatments were considered. The results showed that the diffusion of Cr and Cu was inhibited in the unsterilized treatments with increased NO3-N. However, under the NO3-N sterilized treatments, Cr and Cu concentrations in the overlying water increased. This was mostly related to changes in the microbial regulation of dissolved organic carbon and pH in the unsterilized treatments. Further, in the unsterilized treatments, NO3-N addition considerably increased the concentrations of the acid-soluble (Cr, Cu, and Cd increased by 5%-8%, 29%-41%, and 31%-42%, respectively) and oxidizable (Cr, Cu, and Cd increased by 10%, 5%, and 14%, respectively) fractions. Additionally, compared with that in the unsterilized treatments, Cu and Cd concentrations in P-3 treatments decreased by 7% and 63%, respectively. By producing stable metal ions, microorganisms reduced the amount of unstable heavy metals in the sediment and heavy metal concentration in the overlying water, by considerably enhancing the binding ability of phosphate and heavy metal ions. This study provides a theoretical basis for investigating the coupling mechanisms between heavy metals and nutrients.
Collapse
Affiliation(s)
- Xiaozhu Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qunqun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
7
|
Gao H, Chen B, Qaisar M, Lou J, Sun Y, Cai J. Machine learning-based model construction and identification of dominant factor for simultaneous sulfide and nitrate removal process. BIORESOURCE TECHNOLOGY 2023; 390:129848. [PMID: 37832854 DOI: 10.1016/j.biortech.2023.129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Accurate water quality prediction models are essential for the successful implementation of the simultaneous sulfide and nitrate removal process (SSNR). Traditional models, such as regression and analysis of variance, do not provide accurate predictions due to the complexity of microbial metabolic pathways. In contrast, Back Propagation Neural Networks (BPNN) has emerged as superior tool for simulating wastewater treatment processes. In this study, a generalized BPNN model was developed to simulate and predict sulfide removal, nitrate removal, element sulfur production, and nitrogen gas production in SSNR. Remarkable results were obtained, indicating the strong predictive performance of the model and its superiority over traditional mathematical models for accurately predicting the effluent quality. Furthermore, this study also identified the crucial influencing factors for the process optimization and control. By incorporating artificial intelligence into wastewater treatment modeling, the study highlights the potential to significantly enhance the efficiency and effectiveness of meeting water quality standards.
Collapse
Affiliation(s)
- Hong Gao
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Bilong Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan; Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Juqing Lou
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Yue Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
8
|
Zheng L, Zhang C, Gao R, Zhang L, Ai W, Ulbricht M, Wei Y. Anaerobic membrane bioreactor for hygiene wastewater treatment in controlled ecological life support systems: Degradation of surfactants and microbial community succession. BIORESOURCE TECHNOLOGY 2023; 386:129517. [PMID: 37468015 DOI: 10.1016/j.biortech.2023.129517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The treatment and reuse of hygiene wastewater is crucial to "close the loop" in the controlled ecological life support system (CELSS), and to guarantee longer space missions or planetary habitation. In this work, anaerobic membrane bioreactor (AnMBR) was applied for hygiene wastewater treatment, focused on surfactant degradation and microbial community succession. The removal efficiency of COD and surfactants was 90%∼97% and 80% with a urine source-separation strategy. The microbial community gradually shifted from methanogens to sulfur-metabolizing and surfactant-degradation bacteria, such as Aeromonas. Sulfate was a surfactant degradation product, which triggered sulfate reduction and methane inhibition. The activated carbohydrate and sulfur metabolism were the key mechanism of the microbial process for the excellent performance of AnMBR. This study analyzed the degradation mechanism from the perspective of microbial mechanism, offers a solution for CELSS hygiene wastewater treatment, and supports the future improvement and refinement of AnMBR technology.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Chun Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Rui Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Liangchang Zhang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, 100094 Beijing, China
| | - Weidang Ai
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, 100094 Beijing, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45141 Essen, Germany
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| |
Collapse
|
9
|
Liu L, Xu Y, Pan H, Yu C, Liu Q, Wei C, Zhao X, Su M, Pan J. Performance, comparison and utilization of reduced sulfur (-2) compounds (S 2-, FeS and SCN -) in autotrophic denitrification process by thiosulfate-driven autotrophic denitrifier. ENVIRONMENTAL RESEARCH 2023; 231:116219. [PMID: 37224950 DOI: 10.1016/j.envres.2023.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The coexistence of reduced sulfur (-2) compounds (S2-, FeS and SCN-) are found in some industrial wastewaters due to pre-treatment of Fe(II) salts. These compounds as electron donors have attracted increasing interest in autotrophic denitrification process. However, the difference of their functions still remain unknown, which limit efficient utilization in autotrophic denitrification process. The study aimed to investigate and compare utilization behavior of these reduced sulfur (-2) compounds in autotrophic denitrification process activated by thiosulfate-driven autotrophic denitrifiers (TAD). Results showed that the best denitrification performance was observed in SCN-; while the reduction of nitrate was significantly inhibited in S2- system and the efficient accumulation of nitrite was observed in FeS system with cycle experiments continuing. Additionally, intermediates containing sulfur were produced rarely in SCN- system. However, the utilization of SCN- was limited obviously in comparison with S2- in coexistence systems. Moreover, the presence of S2- increased the accumulation peak of nitrite in coexistence systems. The biological results indicated that the TAD utilized rapidly these sulfur (-2) compounds, in which genus of Thiobacillus, Magnetospirillum and Azoarcus might play main roles. Moreover, Cupriavidus might also participate in sulfur oxidation in SCN- system. In conclusion, these might be attributed to the characteristics of sulfur (-2) compounds including the toxicity, solubility and reaction process. These findings provide theoretical basis for regulation and utilization of these reduced sulfur (-2) compounds in autotrophic denitrification process.
Collapse
Affiliation(s)
- Liangliang Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yangjin Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Hanping Pan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Cunxue Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Qian Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - XiuFang Zhao
- Ecological Science Institute, LingNan Eco & Culture-Tourism Co., Ltd., Dongguan, 523125, PR China
| | - Meirong Su
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jianxin Pan
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
10
|
Yan X, Gao B, Wang J, Zhu X, Zhang M. Insights into remediation effects and bacterial diversity of different remediation measures in rare earth mine soil with SO 4 2- and heavy metals. Front Microbiol 2023; 14:1050635. [PMID: 37032866 PMCID: PMC10079077 DOI: 10.3389/fmicb.2023.1050635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
The increased demand for rare earth resources has led to an increase in the development of rare earth mines (REMs). However, the production of high-concentration leaching agents (SO4 2-) and heavy metals as a result of rare earth mining has increased, necessitating the removal of contaminants. Here, a series of experiments with different remediation measures, including control (CK), sulfate-reducing bacteria (SRB) alone (M), chemicals (Ca(OH)2, 1.5 g/kg) plus SRB (CM-L), chemicals (Ca(OH)2, 3.0 g/kg) plus SRB (CM-M), and chemicals (Ca(OH)2, 4.5 g/kg) plus SRB (CM-H), were conducted to investigate the removal effect of SO4 2-, Pb, Zn, and Mn from the REM soil. Then, a high-throughput sequencing technology was applied to explore the response of bacterial community diversity and functions with different remediation measures. The results indicated that CM-M treatment had a more efficient removal effect for SO4 2-, Pb, Zn, and Mn than the others, up to 94.6, 88.3, 98.7, and 91%, respectively. Soil bacterial abundance and diversity were significantly affected by treatments with the inoculation of SRB in comparison with CK. The relative abundance of Desulfobacterota with the ability to transform SO4 2- into S2- increased significantly in all treatments, except for CK. There was a strong correlation between environmental factors (pH, Eh, SO4 2-, Pb, and Zn) and bacterial community structure. Furthermore, functional prediction analysis revealed that the SRB inoculation treatments significantly increased the abundance of sulfate respiration, sulfite respiration, and nitrogen fixation, while decreasing the abundance of manganese oxidation, dark hydrogen oxidation, and denitrification. This provides good evidence for us to understand the difference in removal efficiency, bacterial community structure, and function by different remediation measures that help select a more efficient and sustainable method to remediate contaminants in the REM soil.
Collapse
Affiliation(s)
- Xiao Yan
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
| | - Bowen Gao
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
| | - Jianlei Wang
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
| | - Xuezhe Zhu
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- School of Metallurgy, Northeastern University, Shenyang, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiang Zhang
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- *Correspondence: Mingjiang Zhang,
| |
Collapse
|
11
|
Chen B, Qaisar M, Xiao J, Li W, Li J, Cai J. Combined acute effect of salinity and substrate concentration on simultaneous sulfide and nitrite removal process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Li C, Maqbool T, Kang H, Zhang Z. In-Situ Sludge Reduction Performance and Mechanism in Sulfidogenic Anoxic-Oxic-Anoxic Membrane Bioreactors. MEMBRANES 2022; 12:865. [PMID: 36135885 PMCID: PMC9502630 DOI: 10.3390/membranes12090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The excess sludge generated from the activated sludge process remains a big issue. Sustainable approaches that achieve in situ sludge reduction with satisfactory effluent quality deserve attention. This study explored the sludge reduction performance of sulfidogenic anoxic-oxic-anoxic (AOA) membrane bioreactors. The dynamics of the microbial community and metabolic pathways were further analyzed to elucidate the internal mechanism of sludge reduction. Compared with the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol), AOAS150 (150 mg/L SO42- in the membrane tank) and AOAS300 (300 mg/L SO42- in the membrane tank) reduced biomass production by 40.39% and 47.45%, respectively. The sulfide reduced from sulfate could enhance the sludge decay rate and decrease sludge production. Extracellular polymeric substances (EPSs) destruction and aerobic lysis contributed to sludge reduction in AOA bioreactors. The relative abundance of Bacteroidetes (phylum), sulfate-reducing bacteria (SRB, genus), and Ignavibacterium (genus) increased in AOA bioreactors compared with MBRcontrol. Our metagenomic analysis indicated that the total enzyme-encoding genes involved in glycolysis, denitrification, and sulfate-reduction processes decreased over time in AOAS300 and were lower in AOAS300 than AOAS150 at the final stage of operation. The excess accumulation of sulfide in AOAS300 may inactive the functional bacteria, and sulfide inhibition induced sludge reduction.
Collapse
Affiliation(s)
- Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongyu Kang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Zhou L, Ou P, Shao Z, Shen Y, Lu J, Zhuang WQ. Dissimilatory sulfate reduction in the cake layer of a full-scale anaerobic dynamic membrane bioreactor for hotel laundry wastewater treatment: Bacterial community and functional genes. BIORESOURCE TECHNOLOGY 2022; 351:127026. [PMID: 35314309 DOI: 10.1016/j.biortech.2022.127026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Dissimilatory sulfate reduction (DSR) in cake layer of full-scale anaerobic dynamic membrane bioreactor for treating hotel laundry wastewater was studied. Change (Δ) of sulfate concentration (ΔSO42-) was positively correlated to dynamic cake layer (DCL) development, while ΔS2- was negatively correlated. ΔSO32- and ΔSorganic sulfur remained around 1.5-2.5 and 1.2-2.3 mg-S/L, respectively. Thus, DSR was the predominant sulfate reduction process in DCL. 33 binned genomes from DCL microbiome samples possessed one or more DSR functional genes. But only four binned genomes possess all functional genes, and thus can achieve complete DSR. However, no significant variations of these DSR bacteria was obseared during DCL development. Metagenomic analysis predicted that sulfate reduction in DCL was mainly carried out by collaborations between bacteria with incomplete DSR pathways. Among which, sulfite → sulfide by dissimilatory-sulfite-reductase expression bacteria was the key process. Overall results suggested that controlling dissimilatory-sulfite-reductase activities could prevent sulfide buildup in the effluent.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhiyuan Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yichang Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jiahao Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Gong L, Tong Y, Yang H, Feng S. Simultaneously pollutant removal and S 0 recovery from composite wastewater containing Cr(VI)-S 2- based on biofilm enhancement. BIORESOURCE TECHNOLOGY 2022; 351:127017. [PMID: 35306135 DOI: 10.1016/j.biortech.2022.127017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation of extracellular polymeric substances-producing bacteria was applied in pollutant removal and S0 recovery from composite wastewater in a mixotrophic denitrification system. In the presence of 200 mg·L-1 S2- and 50 mg·L-1 Cr(VI), the removal efficiencies of chemical oxygen demand, NO3-, S2- and Cr(VI) were 86.38%, 91.82%, 95.75%, and 100.00% respectively, while S0 recovery efficiency reached 79.17%. Increased contents of protein and polysaccharide, especially the high ratio of protein/polysaccharide verified the structural stability of biofilm was promoted by biofilm enhancement. The widespread distribution of bacteria/extracellular polymeric substance (EPS) revealed the more obvious biofilms formation in biofilm-enhanced group. High-throughput sequencing analysis showed that EPS-producing bacteria (Flavobacterium, Thauera, Thiobacillus and Simplicispira) were dominant bacteria in the biofilm-enhanced group. Moreover, by comprehensive considering of redundancy analysis, the colonization of selected bacteria improved the robustness of the reactor and treatment performance to wastewater contained toxic pollutions.
Collapse
Affiliation(s)
- Liangqi Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China.
| |
Collapse
|
15
|
Wang K, Qaisar M, Chen B, Cai J. Response difference of simultaneous sulfide and nitrite removal process to different cooling modes. BIORESOURCE TECHNOLOGY 2022; 346:126601. [PMID: 34953988 DOI: 10.1016/j.biortech.2021.126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The effects of various cooling modes (sudden cooling (25℃→10℃) and step cooling (25℃→20℃→15℃→10℃)) on the performance of simultaneous sulfide and nitrite removal process were reported. Regardless of cooling mode adopted, the process maintained good sulfide removal performance, and removal percentage was 100.00%. Considering nitrite removal percentage, the process was more sensitive to step cooling mode (k = 0.06707) in comparison to sudden cooling mode (k = 0.02760). Lowering temperature promoted the transformation from sulfate to elemental sulfur, and it was easier to increase the proportion of elemental sulfur (79.90%) by means of step cooling. The sulfide oxidation rate and nitrite reduction rate were 0.01540 mg /(L∙min) and 0.00354 mg /(L∙min), respectively, in the sudden cooling mode, and 0.01168 mg /(L∙min) and 0.00138 mg /(L∙min), respectively, in the step cooling mode. Low temperature reduced the diversity of microbial community, and Sulfurovum was still a dominant bacterial member in both cooling modes.
Collapse
Affiliation(s)
- Kaiquan Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, PR China
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan; College of Science, University of Bahrain, Bahrain
| | - Bilong Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, PR China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, PR China.
| |
Collapse
|