1
|
Zhuang Y, Meng S, Cheng F, Li H. Fabrication of advanced cellulose-based devices for solar desalination: A review. Int J Biol Macromol 2025; 310:143250. [PMID: 40250663 DOI: 10.1016/j.ijbiomac.2025.143250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Materials derived from cellulose have attracted considerable attention as affordable substrates for solar desalination, contributing to the solution of the worldwide water crisis. These substances allow for exact control of structural features and improve light absorption in photothermal processes, promoting specific interactions between light scattering and reflection within their porous structure. Moreover, cellulose can be readily transformed into nano- and microporous forms, which enhances water transportation due to its inherent three-dimensional properties. This review examines the design and utilization of cellulose-based solar evaporators for desalination purposes. With benefits such as biocompatibility, environmental friendliness, economic viability, renewable nature, sustainability, and versatility for diverse designs, cellulose-derived materials are set to play a vital role in addressing global water issues.
Collapse
Affiliation(s)
- Yan Zhuang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hongbin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, China.
| |
Collapse
|
2
|
Kumar V, Kumar P, Maity SK, Agrawal D, Narisetty V, Jacob S, Kumar G, Bhatia SK, Kumar D, Vivekanand V. Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:72. [PMID: 38811976 PMCID: PMC11137917 DOI: 10.1186/s13068-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Pankaj Kumar
- Department of Chemical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
3
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
4
|
Wu J, Li Y, Yin J, Wang C, Qi X, Zhou Y, Liu H, Wu P, Zhang J. Mutation breeding of high-stress resistant strains for succinic acid production from corn straw. Appl Microbiol Biotechnol 2024; 108:278. [PMID: 38558151 PMCID: PMC10984890 DOI: 10.1007/s00253-024-13112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The production of succinic acid from corn stover is a promising and sustainable route; however, during the pretreatment stage, byproducts such as organic acids, furan-based compounds, and phenolic compounds generated from corn stover inhibit the microbial fermentation process. Selecting strains that are resistant to stress and utilizing nondetoxified corn stover hydrolysate as a feedstock for succinic acid production could be effective. In this study, A. succinogenes CICC11014 was selected as the original strain, and the stress-resistant strain A. succinogenes M4 was obtained by atmospheric and room temperature plasma (ARTP) mutagenesis and further screening. Compared to the original strain, A. succinogenes M4 exhibited a twofold increase in stress resistance and a 113% increase in succinic acid production when hydrolysate was used as the substrate. By conducting whole-genome resequencing of A. succinogenes M4 and comparing it with the original strain, four nonsynonymous gene mutations and two upstream regions with base losses were identified. KEY POINTS: • A high-stress-resistant strain A. succinogenes M4 was obtained by ARTP mutation • The production of succinic acid increased by 113% • The mutated genes of A. succinogenes M4 were detected and analyzed.
Collapse
Affiliation(s)
- Jing Wu
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yilian Li
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jinbao Yin
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chen Wang
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuejin Qi
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yujie Zhou
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Hongjuan Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Pengfei Wu
- College of Life Science and Technology, Yangtze Normal University, Fuling Chongqing, 408100, China.
| | - Jianan Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Tran VG, Mishra S, Bhagwat SS, Shafaei S, Shen Y, Allen JL, Crosly BA, Tan SI, Fatma Z, Rabinowitz JD, Guest JS, Singh V, Zhao H. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis. Nat Commun 2023; 14:6152. [PMID: 37788990 PMCID: PMC10547785 DOI: 10.1038/s41467-023-41616-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34-90% relative to fossil-based production processes. We expect I. orientalis can serve as a general industrial platform for production of organic acids.
Collapse
Affiliation(s)
- Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Somesh Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarang S Bhagwat
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Saman Shafaei
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihui Shen
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jayne L Allen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Crosly
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jeremy S Guest
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Vijay Singh
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Mutyala S, Li S, Khandelwal H, Kong DS, Kim JR. Citrate Synthase Overexpression of Pseudomonas putida Increases Succinate Production from Acetate in Microaerobic Cultivation. ACS OMEGA 2023; 8:26231-26242. [PMID: 37521642 PMCID: PMC10373214 DOI: 10.1021/acsomega.3c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Acetate is an end-product of anaerobic biodegradation and one of the major metabolites of microbial fermentation and lingo-cellulosic hydrolysate. Recently, acetate has been highlighted as a feedstock to produce value-added chemicals. This study examined acetate conversion to succinate by citrate synthase (gltA)-overexpressed Pseudomonas putida under microaerobic conditions. The acetate metabolism is initiated with the gltA enzyme, which converts acetyl-CoA to citrate. gltA-overexpressing P. putida (gltA-KT) showed an ∼50% improvement in succinate production compared to the wild type. Under the optimal pH of 7.5, the accumulation of succinate (4.73 ± 0.6 mM in 36 h) was ∼400% higher than that of the wild type. Overall, gltA overexpression alone resulted in 9.5% of the maximum theoretical yield in a minimal medium with acetate as the sole carbon source. This result shows that citrate synthase is important in acetate conversion to succinate by P. putida under microaerobic conditions.
Collapse
|
7
|
Cox R, Narisetty V, Castro E, Agrawal D, Jacob S, Kumar G, Kumar D, Kumar V. Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:336-345. [PMID: 37209430 DOI: 10.1016/j.wasman.2023.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Lactic acid (LA) is a platform chemical with diverse industrial applications. Presently, commercial production of LA is dominated by microbial fermentation using sugary or starch-based feedstocks. Research pursuits emphasizing towards sustainable production of LA using non-edible and renewable feedstocks have accelerated the use of lignocellulosic biomass (LCB). The present study focuses on the valorisation of xylose derived from sugarcane bagasse (SCB) and olive pits (OP) through hydrothermal and dilute acid pretreatment, respectively. The xylose-rich hydrolysate obtained was used for LA production by homo-fermentative and thermophilic Bacillus coagulans DSM2314 strain under non-sterile conditions. The fed-batch mode of fermentation resulted in maximum LA titers of 97.8, 52.4 and 61.3 g/L with a yield of 0.77, 0.66 and 0.71 g/g using pure xylose, xylose-rich SCB and OP hydrolysates, respectively. Further, a two-step aqueous two-phase system (ATPS) extraction technique was employed for the separation and recovery of LA accumulated on pure and crude xylose. The LA recovery was 45 - 65% in the first step and enhanced to 80-90% in the second step.The study demonstrated an efficient integrated biorefinery approach to valorising the xylose-rich stream for cost-effective LA production and recovery.
Collapse
Affiliation(s)
- Rylan Cox
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus LasLagunillas, 23071 Jaén, Spain
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
8
|
Cheng MH, Singh S, Carr Clennon AN, Dien BS, Singh V. Production of Designer Xylose-Acetic Acid Enriched Hydrolysate from Bioenergy Sorghum, Oilcane, and Energycane Bagasses. BIORESOURCE TECHNOLOGY 2023; 380:129104. [PMID: 37121520 DOI: 10.1016/j.biortech.2023.129104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Xylan accounts for up to 40% of the structural carbohydrates in lignocellulosic feedstocks. Along with xylan, acetic acid in sources of hemicellulose can be recovered and marketed as a commodity chemical. Through vibrant bioprocessing innovations, converting xylose and acetic acid into high-value bioproducts via microbial cultures improves the feasibility of lignocellulosic biorefineries. Enzymatic hydrolysis using xylanase supplemented with acetylxylan esterase (AXE) was applied to prepare xylose-acetic acid enriched hydrolysates from bioenergy sorghum, oilcane, or energycane using sequential hydrothermal-mechanical pretreatment. Various biomass solids contents (15 to 25%, w/v) and xylanase loadings (140 to 280 FXU/g biomass) were tested to maximize xylose and acetic acid titers. The xylose and acetic acid yields were significantly improved by supplementing with AXE. The optimal yields of xylose and acetic acid were 92.29% and 62.26% obtained from hydrolyzing energycane and oilcane at 25% and 15% w/v biomass solids using 280 FXU xylanase/g biomass and AXE, respectively.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Department of Natural Resources and Society, College of Natural Resources, University of Idaho, 995 MK Simpson Blvd, Idaho Falls, ID 83401, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuchi Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan N Carr Clennon
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Bruce S Dien
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Development of a Simple and Robust Kinetic Model for the Production of Succinic Acid from Glucose Depending on Different Operating Conditions. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Succinic acid (SA) is one of the main identified biomass-derived chemical building blocks. In this work we approach the study of its production by Actinobacillus succinogenes DSM 22257 from glucose, focusing on the development and application of a simple kinetic model capable of representing the evolution of the process over time for a great diversity of process variables key to the production of this platform bio-based chemical: initial biomass concentration, yeast extract concentration, agitation speed, and carbon dioxide flow rate. All these variables were studied experimentally, determining the values of key fermentation parameters: titer (23.8–39.7 g·L−1), yield (0.59–0.72 gSA·gglu−1), productivity (0.48–0.96 gSA·L−1·h−1), and selectivity (0.61–0.69 gSA·gglu−1). Even with this wide diversity of operational conditions, a non-structured and non-segregated kinetic model was suitable for fitting to experimental data with high accuracy, considering the values of the goodness-of-fit statistical parameters. This model is based on the logistic equation for biomass growth and on potential kinetic equations to describe the evolution of SA and the sum of by-products as production events that are not associated with biomass growth. The application of the kinetic model to diverse operational conditions sheds light on their effect on SA production. It seems that nitrogen stress is a good condition for SA titer and selectivity, there is an optimal inoculum mass for this purpose, and hydrodynamic stress starts at 300 r.p.m. in the experimental set-up employed. Due to its practical importance, and to validate the developed kinetic model, a fed-batch fermentation was also carried out, verifying the goodness of the model proposed via the process simulation (stage or cycle 1) and application to further cycles of the fed-batch operation. The results showed that biomass inactivation started at cycle 3 after a grace period in cycle 2.
Collapse
|
10
|
Kumar V, Brancoli P, Narisetty V, Wallace S, Charalampopoulos D, Kumar Dubey B, Kumar G, Bhatnagar A, Kant Bhatia S, J Taherzadeh M. Bread waste - A potential feedstock for sustainable circular biorefineries. BIORESOURCE TECHNOLOGY 2023; 369:128449. [PMID: 36496119 DOI: 10.1016/j.biortech.2022.128449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The management of staggering volume of food waste generated (∼1.3 billion tons) is a serious challenge. The readily available untapped food waste can be promising feedstock for setting up biorefineries and one good example is bread waste (BW). The current review emphasis on capability of BW as feedstock for sustainable production of platform and commercially important chemicals. It describes the availability of BW (>100 million tons) to serve as a feedstock for sustainable biorefineries followed by examples of platform chemicals which have been produced using BW including ethanol, lactic acid, succinic acid and 2,3-butanediol through biological route. The BW-based production of these metabolites is compared against 1G and 2G (lignocellulosic biomass) feedstocks. The review also discusses logistic and supply chain challenges associated with use of BW as feedstock. Towards the end, it is concluded with a discussion on life cycle analysis of BW-based production and comparison with other feedstocks.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| | - Pedro Brancoli
- Swedish Centre for Resource Recovery, University of Borås, Borås 501 90, Sweden
| | - Vivek Narisetty
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Unied Kingdom
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | | |
Collapse
|
11
|
Rodríguez-Martínez B, Romaní A, Eibes G, Garrote G, Gullón B, Del Río PG. Potential and prospects for utilization of avocado by-products in integrated biorefineries. BIORESOURCE TECHNOLOGY 2022; 364:128034. [PMID: 36174891 DOI: 10.1016/j.biortech.2022.128034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The industrial processing of avocado to extract oil, and produce guacamole or sauces generates enormous quantities of peels and seeds (around 2 million tons worldwide in 2019) without commercially valuable applications. However, various studies have suggested the presence of a wide range of interesting compounds in the composition of these by-products. This review depicts a thorough outline of the capacity of avocado residues to be converted into a portfolio of commodities that can be employed in sectors such as the food, cosmetics, pharmaceuticals, environment, and energy industries. Therefore, a novel biorefinery strategy to valorize avocado-processing residues to obtain a polyphenolic extract, pectooligosaccharides, and succinic acid was presented. Additionally, the prospects and challenges facing a biorefinery based on the valorization of avocado residues are presented, particularly its techno-economic feasibility on an industrial scale, aiming for a resource-efficient circular bio-economy.
Collapse
Affiliation(s)
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gemma Eibes
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15706 A Coruña, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| | - Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
12
|
Narisetty V, Okibe MC, Amulya K, Jokodola EO, Coulon F, Tyagi VK, Lens PNL, Parameswaran B, Kumar V. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. BIORESOURCE TECHNOLOGY 2022; 360:127513. [PMID: 35772717 DOI: 10.1016/j.biortech.2022.127513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Succinic acid (SA) is used as a commodity chemical and as a precursor in chemical industry to produce other derivatives such as 1,4-butaneidol, tetrahydrofuran, fumaric acid, and bio-polyesters. The production of bio-based SA from renewable feedstocks has always been in the limelight owing to the advantages of renewability, abundance and reducing climate change by CO2 capture. Considering this, the current review focuses on various 2G feedstocks such as lignocellulosic biomass, crude glycerol, and food waste for cost-effective SA production. It also highlights the importance of producing SA via separate enzymatic hydrolysis and fermentation, simultaneous saccharification and fermentation, and consolidated bioprocessing. Furthermore, recent advances in genetic engineering, and downstream SA processing are thoroughly discussed. It also elaborates on the techno-economic analysis and life cycle assessment (LCA) studies carried out to understand the economics and environmental effects of bio-based SA synthesis.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | | - K Amulya
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | | | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
13
|
Narisetty V, Prabhu AA, Bommareddy RR, Cox R, Agrawal D, Misra A, Haider MA, Bhatnagar A, Pandey A, Kumar V. Development of Hypertolerant Strain of Yarrowia lipolytica Accumulating Succinic Acid Using High Levels of Acetate. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10858-10869. [PMID: 36035440 PMCID: PMC9400109 DOI: 10.1021/acssuschemeng.2c02408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Indexed: 05/26/2023]
Abstract
Acetate is emerging as a promising feedstock for biorefineries as it can serve as an alternate carbon source for microbial cell factories. In this study, we expressed acetyl-CoA synthase in Yarrowia lipolytica PSA02004PP, and the recombinant strain grew on acetate as the sole carbon source and accumulated succinic acid or succinate (SA). Unlike traditional feedstocks, acetate is a toxic substrate for microorganisms; therefore, the recombinant strain was further subjected to adaptive laboratory evolution to alleviate toxicity and improve tolerance against acetate. At high acetate concentrations, the adapted strain Y. lipolytica ACS 5.0 grew rapidly and accumulated lipids and SA. Bioreactor cultivation of ACS 5.0 with 22.5 g/L acetate in a batch mode resulted in a maximum cell OD600 of 9.2, with lipid and SA accumulation being 0.84 and 5.1 g/L, respectively. However, its fed-batch cultivation yielded a cell OD600 of 23.5, SA titer of 6.5 g/L, and lipid production of 1.5 g/L with an acetate uptake rate of 0.2 g/L h, about 2.86 times higher than the parent strain. Cofermentation of acetate and glucose significantly enhanced the SA titer and lipid accumulation to 12.2 and 1.8 g/L, respectively, with marginal increment in cell growth (OD600: 26.7). Furthermore, metabolic flux analysis has drawn insights into utilizing acetate for the production of metabolites that are downstream to acetyl-CoA. To the best of our knowledge, this is the first report on SA production from acetate by Y. lipolytica and demonstrates a path for direct valorization of sugar-rich biomass hydrolysates with elevated acetate levels to SA.
Collapse
Affiliation(s)
- Vivek Narisetty
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
| | - Ashish A. Prabhu
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
| | - Rajesh Reddy Bommareddy
- Department
of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1
8ST, United Kingdom
| | - Rylan Cox
- School
of Aerospace, Transport and Manufacturing, Cranfield University, Wharley
End MK43 0AL, United Kingdom
| | - Deepti Agrawal
- Biochemistry
and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Ashish Misra
- Department
of Biochemical Engineering& Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - M. Ali Haider
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Amit Bhatnagar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Pandey
- Centre
for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
- Centre
for Energy and Environmental Sustainability, Lucknow 226 029, India
- Sustainability
Cluster, School of Engineering, University
of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Vinod Kumar
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
14
|
Modeling the Succinic Acid Bioprocess: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Succinic acid has attracted much interest as a key platform chemical that can be obtained in high titers from biomass through sustainable fermentation processes, thus boosting the bioeconomy as a critical production strategy for the future. After several years of development of the production of succinic acid, many studies on lab or pilot scale production have been reported. The relevant experimental data reveal underlying physical and chemical dynamic phenomena. To take advantage of this vast, but disperse, kinetic information, a number of mathematical kinetic models of the unstructured non-segregated type have been proposed in the first place. These relatively simple models feature critical aspects of interest for the design, control, optimization and operation of this key bioprocess. This review includes a detailed description of the phenomena involved in the bioprocesses and how they reflect on the most important and recent models based on macroscopic and metabolic chemical kinetics, and in some cases even coupling mass transport.
Collapse
|
15
|
Shen N, Li S, Qin Y, Jiang M, Zhang H. Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2095303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Yan Qin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| |
Collapse
|
16
|
Gupta VK, Nguyen QD, Liu S, Taherzadeh MJ, Sirohi R. Microbes in valorisation of biomass to value-added products. BIORESOURCE TECHNOLOGY 2022; 347:126738. [PMID: 35051569 DOI: 10.1016/j.biortech.2022.126738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; Centerfor Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom.
| | - Quang D Nguyen
- Hungarian University of Agriculture and Life Sciences, Hungary
| | - Shijie Liu
- State University of New York College of Environmental Science and Forestry, United States
| | | | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|