1
|
Warne CM, Fadlallah S, Allais F, Guebitz GM, Pellis A. Controlled Enzymatic Synthesis of Polyesters Based on a Cellulose-Derived Triol Monomer: A Design of Experiment Approach. CHEMSUSCHEM 2024; 17:e202301841. [PMID: 38545821 DOI: 10.1002/cssc.202301841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Regioselective enzymatic polycondensation of the bio-based cellulose derived polyol, Triol-citro, and dimethyl adipate using Candida antarctica Lipase B (CaLB) was investigated. A Design of Experiment approach with MODDE® Pro 13 was used to determine important factors in the branching behavior of this polymer, and reactant ratio, temperature, reaction time and enzyme wt % were the studied factors. Multifunctional polyesters with pendant hydroxy groups were synthesized and fully characterized using 2D NMR techniques to determine degree of branching. Branching was minimal, with a maximum of 16 % observed, and monomer ratio, temperature and reaction time were all determined to be significant factors. In this work, Mn of up to 13 kDa were achieved, while maintaining degree of branching below 15 %, resulting in a linear polyester with the potential to be further functionalized.
Collapse
Affiliation(s)
- Cicely M Warne
- ACIB GmbH, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, 51110, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, 51110, France
| | - Georg M Guebitz
- ACIB GmbH, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, 16146, Genova, GE, Italy
| |
Collapse
|
2
|
Joarder S, Bansal D, Meena H, Kaushik N, Tomar J, Kumari K, Bahadur I, Ha Choi E, Kaushik NK, Singh P. Bioinspired green deep eutectic solvents: preparation, catalytic activity, and biocompatibility. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Sun T, Zhang L, Yang Y, Li Y, Ren S, Dong L, Lei T. Fast Pyrolysis of Cellulose and the Effect of a Catalyst on Product Distribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16837. [PMID: 36554724 PMCID: PMC9779704 DOI: 10.3390/ijerph192416837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Fast pyrolysis of microcrystalline cellulose (MC) was carried out by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The effects of temperature, time, and a catalyst on the distribution of the pyrolysis products were analyzed. The reaction temperature and time can significantly affect the types and yields of compounds produced by cellulose pyrolysis. A pyrolysis temperature of 500-600 °C and pyrolysis time of 20 s optimized the yield of volatile liquid in the pyrolysis products of cellulose. In all catalytic experiments, the relative contents of alcohols (1.97%), acids (2.32%), and esters (4.52%) were highest when K2SO4 was used as a catalyst. HZSM-5 promoted the production of carbohydrates (92.35%) and hydrocarbons (2.20%), while it inhibited the production of aldehydes (0.30%) and ketones (1.80%). MCM-41 had an obvious catalytic effect on cellulose, increasing the contents of aldehydes (41.58%), ketones (24.51%), phenols (1.82%), furans (8.90%), and N-compounds (12.40%) and decreasing those of carbohydrates (5.38%) and alcohols (0%).
Collapse
Affiliation(s)
- Tanglei Sun
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Lu Zhang
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
| | - Yantao Yang
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Yanling Li
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Suxia Ren
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Lili Dong
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Tingzhou Lei
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| |
Collapse
|
4
|
Wen Z, Gao D, Lin J, Li S, Zhang K, Xia Z, Wang D. Magnetic porous cellulose surface-imprinted polymers synthetized with assistance of deep eutectic solvent for specific recognition and purification of bisphenols. Int J Biol Macromol 2022; 216:374-387. [PMID: 35798079 DOI: 10.1016/j.ijbiomac.2022.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023]
Abstract
Magnetic porous cellulose molecularly imprinted polymers-based bisphenols have been developed using Fe3O4 as the magnetic material, a deep eutectic solvent as the assisted solvent, and N-isopropylacrylamide as the functional monomer. The resulting magnetic porous cellulose molecularly imprinted polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, and Brunauer-Emmett-Teller analysis. Moreover, the adsorption properties of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A, bisphenol F, and bisphenol AF were investigated using static, dynamic, and selective adsorption experiments. The introduction of porous cellulose materials significantly improves the capabilities of the material. The adsorption capacity, mass transfer efficiency, and selectivity of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A were 5.9, 4.0, and 4.4 times those of traditional molecularly imprinted polymers. Moreover, the adsorption stability of the magnetic porous cellulose molecularly imprinted polymers was investigated under different temperature and pH conditions. The adsorption characteristics of the magnetic porous cellulose molecularly imprinted polymers toward the target molecules were investigated using adsorption isotherm, kinetic, and thermodynamic models. Hydrogen bonding is the main interaction formed between the magnetic porous cellulose molecularly imprinted polymers and the target molecules. Magnetic porous cellulose molecularly imprinted polymers have great application value with excellent stability and reusability. Finally, the combination of the magnetic porous cellulose molecularly imprinted polymers and high-performance liquid chromatography or ultra-performance liquid chromatography-mass spectrometry was successfully used for the purification and detection of bisphenols in milk (1.349 ng/mL bisphenol F and 3.014 ng/mL bisphenol AF), canned fruits (1129 ng/mL bisphenol A, 10.11 ng/mL bisphenol F, and 91.87 ng/mL bisphenol AF), and fish (11.91 ng/mL bisphenol AF) samples. Furthermore, the magnetic porous cellulose molecularly imprinted polymer method is more selective, sensitive, and accurate than the traditional precipitation method.
Collapse
Affiliation(s)
- Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siyi Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|