1
|
Ning J, Kamali M, Crauwels S, Appels L. The triple action of pinewood biochar-based materials to improve biogas yields: pH regulation, DIET, and colonization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125185. [PMID: 40174389 DOI: 10.1016/j.jenvman.2025.125185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Cheese whey wastewater (CWW) is an effluent stream with a high organic content produced by the dairy processing industry. Although anaerobic digestion (AD) is a promising process to treat CWW, it is prone to acidification caused by the accumulation of intermediate metabolites such as volatile fatty acids during AD because of CWW's high organic content. Our study explored how biochar (BC) and magnetite biochar (MBC) at concentrations of 2.5 and 5.0 g/L could play a role in relieving the acidification, and which mechanisms are at play. The results showed that at low anaerobic granular sludge (AGS) concentrations, biogas production in BC/MBC-assisted digestion could recover from acidification within 25∼44 days, while this issue pertained to the control reactor. As a result, BC and MBC-assisted systems led to a significantly higher biogas production of +119% ∼ +191%. The microbial community analysis showed that BC and MBC enriched the top 20 bacteria selected based on relative abundance and direct interspecies electron transfer (DIET)-related bacteria. Correlation plots of the material and AGS characterization showed that the main mechanism of action of BC and MBC at low AGS was pH regulation rather than DIET as reported in the literature. Alkaline earth metals such as Ca and Mg present in biochar-based materials increased alkalinity to provide buffering capacity and increase the pH. This study allows researchers to move away from the narrow perspective of overly focusing on DIET and expand to a more comprehensive look at the multiple mechanisms such as pH regulation, colonization, and DIET.
Collapse
Affiliation(s)
- Jing Ning
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Sam Crauwels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Microbial and Plant Genetics (CMPG), Group T Leuven Campus, Willem de Croylaan 46, B-3001, Leuven, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
2
|
Yang J, Shen K, He C, Xu L, Shen H, Xu C, Hu ZH, Wang W. Impact of carbon-based conductive materials on performance and microbial community composition during anaerobic digestion of butanol-octanol wastewater. BIORESOURCE TECHNOLOGY 2025; 417:131880. [PMID: 39592073 DOI: 10.1016/j.biortech.2024.131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Butanol-octanol wastewater (BOW) from coal syngas conversion with hazardous and high salinity could hinder anaerobic digestion (AD). The carbon-based conductive materials (CCM) appear viable for enhancing the AD capability of BOW. Nevertheless, the potential mechanisms of different CCM types on AD of BOW remain unclear. The three different morphologies of CCM, powdered activated carbon (PAC), granular activated carbon (GAC), and carbon fiber cloth (CFC), were employed to improve methane conversion rate in AD of actual BOW. Results indicated that, compared to other carbon materials, more aromatic functional groups on the surface of GAC promoted electron transfer and notably increased degradation of 3-heptanone in BOW and methanogenic. Microbial community structure analysis showed Geobacter on GAC increased to 30.99 %, while Syntrophomonas and Methanosaeta in the sludge increased by 5.05 % and 7.7 %, respectively. The methane conversion rate of BOW was increased by promoting direct interspecies electron transfer (DIET) through GAC.
Collapse
Affiliation(s)
- Jing Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kaiyu Shen
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei 230009, China.
| | - Luyao Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Shen
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changwen Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhen-Hu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Yao B, Liu M, Yu L, Ni Q, Yuan C, Hu X, Feng H, Zhang J, Chen Y. Mechanism of biochar in alleviating the inhibition of anaerobic digestion under ciprofloxacin press. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135949. [PMID: 39341191 DOI: 10.1016/j.jhazmat.2024.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The antibiotic ciprofloxacin (CIP), detected in various aqueous environments, has broad-spectrum antimicrobial properties that can severely affect methanogenic performance in anaerobic systems. In this study, a novel strategy to alleviate the inhibition of AD performance under CIP press with the direct addition of biochar (BC) prepared from corn stover was proposed and the corresponding alleviation mechanism was investigated. When the dosage of BC was 5 and 20 g/L, the cumulative methane production in AD could reach 317.9 and 303.0 mL/g COD, and the CIP degradation efficiencies reached 94.1 % and 96.6 %, significantly higher than those of 123.0 mL/g COD and 81.2 % in the Control system. BC avoided excessive reactive oxygen species in anaerobic systems and induced severe oxidative stress response, while protecting the cell membrane and cell wall of microorganisms. Microorganisms could consume and utilize more organic extracellular polymeric substances for their growth and metabolism. When BC was involved in AD, fewer toxic intermediates were generated during CIP biodegradation, reducing acute and chronic toxicity in anaerobic systems. Microbial diversity suggested that BC could enrich functional microorganisms involved in direct interspecies electron transfer like Methanosaeta, norank_f_Bacteroidetes_vadinHA17, JGI-0000079-D21 and Syntrophomonas, thus facilitating the methanogenic process and CIP degradation. Genetic analyses showed that BC could effectively upregulate functional genes related to the conversion of butyrate-to-acetate and acetyl-to-methane under CIP stress, while functional gene abundance associated with CIP degradation enhanced partially, about encoding translocases, oxidoreductases, lyases, and ligases. Therefore, BC can be added to AD under CIP press to address its inhibited methanogenic performance.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Liqiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Changjie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haoran Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Li Y, Zhang J, Wen X, Mazarji M, Chen S, Liu Q, Zhao S, Feng L, Li G, Zhou H, Pan J. Advancing anaerobic digestion with MnO 2-modified biochar: Insights into performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176303. [PMID: 39299339 DOI: 10.1016/j.scitotenv.2024.176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO2 (MBC) in complex systems remains largely unexplored. Biochar composited with MnO2 at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO2 enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
| | - Jinglei Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Xinran Wen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuo Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Qiang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Shenggeng Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Liu Q, Sun Z, Pan J, Feng L, Zhou H, Li Y, Li G. Response of food waste anaerobic digestion to the dimensions of micron-biochar under 30 g VS/L organic loading rate: Focus on gas production and microbial community structure. CHEMOSPHERE 2024; 365:143358. [PMID: 39299463 DOI: 10.1016/j.chemosphere.2024.143358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biochar modification is an effective approach to enhance its ability to promote anaerobic digestion (AD). Focusing on the physical properties of biochar, the impact of different particle sizes of biochar on AD of food waste (FW) at high organic loading rate (OLR) was investigated. Four biochar with different sizes (40-200 mesh) were prepared and used in AD systems at OLR 30 g VS/L. The research results found that biochar with a volume particle size of 102 μm (RBC-P140) had top-performance in promoting cumulative methane production, increasing by 13.20% compared to the control group. The analysis results of the variety in volatile acids and alkalinity in the system did not show a correlation with the size of biochar, but small size has the potential to improve the environmental tolerance of the system to high acidity. Microbial community analysis showed that the abundance of aceticlastic methanogen and the composition of zoogloea were optimized through relatively small-sized biochar. Through revealing the effect of biochar particle size on AD system at high OLR, this work provided theoretical guidance for regulating fermentation systems using biochar.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China
| | - Ziyan Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying, 257061, China
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying, 257061, China.
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
6
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
7
|
Hu P, Xiao M, Wang N, Zhang S, Shi J, Shi J, Tang T, Liu L. Metagenome reveals the possible mechanism that microbial strains promote methanogenesis during anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2024; 251:118723. [PMID: 38490625 DOI: 10.1016/j.envres.2024.118723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
For better understanding the mechanism of microbial strains promoting methane production, four strains Hungatella xylanolytica A5, Bacillus licheniformis B1, Paraclostridium benzoelyticum C2 and Advenella faeciporci E1 were inoculated into anaerobic digestion systems. After bioaugmentation, the cumulative methane production of A5, B1, C2 and E1 groups elevated by 11.68%, 8.20%, 18.21% and 15.67% compared to CK group, respectively. The metagenomic analysis revealed that the species diversity and uniformity of the experimental groups was improved, and hydrolytic acidifying bacteria, represented by Clostridiaceae, Anaerolineaceae and Oscillospiraceae, and methanogens, such as Methanotrichaceae and Methanobacteriaceae, were enriched. Meanwhile, the abundance of key genes in carbohydrate, pyruvate and methane metabolism was increased in the inoculated groups, providing reasonable reasons for more methane production. The strengthening mechanism of microbial strains in this study offered a theoretical foundation for selecting a suitable bioaugmentation strategy to solve the problems of slow start-up and low methane production in anaerobic digestion.
Collapse
Affiliation(s)
- Panpan Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Tao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| |
Collapse
|
8
|
Tang T, Wang Y, Zhao X. New insights into antibiotic stimulation of methane production during anaerobic digestion. CHEMOSPHERE 2024; 349:140785. [PMID: 38016524 DOI: 10.1016/j.chemosphere.2023.140785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Residual antibiotics in swine wastewater pose a critical challenge for stable anaerobic digestion (AD). This study offers fresh insights into the anaerobic treatment of swine wastewater. The results showed that the presence of three typical antibiotics (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) in swine wastewater could promote methane production by stimulating the production and conversion of ethanol. Among them, SMX exhibited the strongest methane promotion effect, with the cumulative methane production increasing from 138.47 to 2204.19 mL/g VS. According to the microbial community structure, antibiotics could promote the growth of Corynebacterium, Lutispora and hydrogenotrophic methanogens (Methanosassiliicoccus, Methanobrevibacter, and Methanobacterium), but inhibit the enrichment of acetoclastic methanogen (Methanosaeta). The relative abundance of Methanosaeta decreased from 2.93-19.80% to 0.52-2.58% under antibiotic stress. Furthermore, there were significant differences in the influence of different antibiotic types on methanogenic pathways. Specifically, OTC and CIP promoted the acetoclastic and hydrogenotrophic pathways, respectively, to enhance methane production. However, SMX could promote both acetoclastic and hydrogenotrophic pathways.
Collapse
Affiliation(s)
- Taotao Tang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| | - Yin Wang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China.
| | - Xiaolong Zhao
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| |
Collapse
|
9
|
You T, Wang S, Xi Y, Yao S, Yan Z, Ding Y, Li Y, Zeng X, Jia Y. Photo-enhanced oxidation of arsenite by biochar: The effect of pH, kinetics and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132652. [PMID: 37793254 DOI: 10.1016/j.jhazmat.2023.132652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
The persistent and photo-induced free radicals of biochar play significant roles in the transformation or degradation of inorganic and organic pollutants. However, the redox capacity of biochar for arsenite (As(III)) photochemistry under different pH conditions remains unclear. In this study, we discovered that solar radiation primarily expedited the oxidation of As(III) by biochar by augmenting the production of reactive oxygen species (ROS). Biochar demonstrated a strong pH reliance on the photooxidation of As(III). Under acidic and neutral conditions, solar radiation amplified the generation of •OH (hydroxyl radicals) by BC-P (phenolic -OH of biochar) and semiquinone-type BC-PFRs (persistent free radicals of biochar) by 4.9 and 2.0 times, respectively, resulting in enhanced As(III) oxidation. Under alkaline conditions, BC-P and BC-Q (quinoid CO of biochar) facilitated the production of H2O2 (hydrogen peroxide) by 2.1 times through the spontaneous formation of semiquinone-type BC-PFRs via an anti-disproportionation reaction, promoting approximately 88.2% of As(III) photooxidation. Furthermore, solar radiation elevated around 11.8% As(III) oxidation driven by BC-Q and semiquinone-type BC-PFRs. This study provides a crucial theoretical foundation for using biochar to treat arsenic pollution in aquatic systems and understanding the migration and transformation of arsenic in different environments.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
10
|
Ding C, Zhang Y, Li X, Liu Q, Li Y, Lu Y, Feng L, Pan J, Zhou H. Strategy to enhance the semicontinuous anaerobic digestion of food waste via exogenous additives: experimental and machine learning approaches. RSC Adv 2023; 13:35349-35358. [PMID: 38053678 PMCID: PMC10695191 DOI: 10.1039/d3ra05811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
The anaerobic digestion (AD) of food waste (FW) was easy to acidify and accumulate ammonia nitrogen. Adding exogenous materials to the AD system can enhance its conversion efficiency by alleviating acidification and ammonia nitrogen inhibition. This work investigated the effects of the addition frequency and additive amount on the AD of FW with increasing organic loading rate (OLR). When the OLR was 3.0 g VS per L per day and the concentration of the additives was 0.5 g per L per day, the stable methane yield reached 263 ± 22 mL per g VS, which was higher than that of the group without the additives (189 mL per g VS). Methanosaetaceae was the dominant archaea, with a maximum abundance of 93.25%. Through machine learning analysis, it was found that the optimal daily methane yield could be achieved. When the OLR was within the range of 0-3.0 g VS per L per day, the pH was within the range of 7.6-8.0, and the additive concentration was more than 0.5 g per L per day. This study proposed a novel additive and determined its usage strategy for regulating the AD of FW through experimental and simulation approaches.
Collapse
Affiliation(s)
- Chuan Ding
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB) Beijing 102249 P. R. China
| | - Yi Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB) Beijing 102249 P. R. China
| | - Xindu Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB) Beijing 102249 P. R. China
| | - Qiang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB) Beijing 102249 P. R. China
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB) Beijing 102249 P. R. China
| | - Yanjuan Lu
- Beijing Fairyland Environmental Technology Co., Ltd Beijing 100080 P. R. China
| | - Lu Feng
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO) 1431 Ås Norway
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences Beijing 100081 P. R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB) Beijing 102249 P. R. China
| |
Collapse
|
11
|
Wang ZK, Liu QH, Yang ZM. Nano magnetite-loaded biochar boosted methanogenesis through shifting microbial community composition and modulating electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160597. [PMID: 36464047 DOI: 10.1016/j.scitotenv.2022.160597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
A batch anaerobic fermentation system was employed to clarify how nano magnetite-loaded biochar can improve methanogenic performance of the propionate-degrading consortia (PDC). The nano magnetite-loaded biochar was prepared in a sequential hydrothermal and pyrolysis procedure using the household waste (HW), biogas residue (BR) and Fe (NO3)3 as pristine materials. Comprehensive characterization showed that the nano magnetite-loaded biochar ameliorated the biochar properties with large specific surface area, high electrochemical response and low electron transfer resistance. PDC supplemented with the magnetite/BR-originated biochar composites displayed excellent methanogenic performance, where the methane production rate was enhanced by 1.6-fold compared with the control. The nano magnetite-loaded biochar promoted methane production probably by promoting direct interspecies electron transfer between syntrophic bacteria (e.g., Syntrophobacter and Thauera) and their partners (e.g., Methanosaeta). In this process, magnetite might be responsible for triggering rapidly extracellular electron release, whereas both external functional groups and intrinsic graphitic matrices of biochar might work as electron bridges for electron transport.
Collapse
Affiliation(s)
- Zhao-Kai Wang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; Third Institute of Oceanography, Ministry of Natural Resources, China
| | - Qing-Hua Liu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
12
|
Zhang K, Deng Y, Liu Z, Feng Y, Hu C, Wang Z. Biochar Facilitated Direct Interspecies Electron Transfer in Anaerobic Digestion to Alleviate Antibiotics Inhibition and Enhance Methanogenesis: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032296. [PMID: 36767663 PMCID: PMC9915179 DOI: 10.3390/ijerph20032296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/04/2023]
Abstract
Efficient conversion of organic waste into low-carbon biofuels such as methane through anaerobic digestion (AD) is a promising technology to alleviate energy shortages. However, issues such as inefficient methane production and poor system stability remain for AD technology. Biochar-facilitated direct interspecies electron transfer (DIET) has recently been recognized as an important strategy to improve AD performance. Nonetheless, the underlying mechanisms of biochar-facilitated DIET are still largely unknown. For this reason, this review evaluated the role of biochar-facilitated DIET mechanism in enhancing AD performance. First, the evolution of DIET was introduced. Then, applications of biochar-facilitated DIET for alleviating antibiotic inhibition and enhancing methanogenesis were summarized. Next, the electrochemical mechanism of biochar-facilitated DIET including electrical conductivity, redox-active characteristics, and electron transfer system activity was discussed. It can be concluded that biochar increased the abundance of potential DIET microorganisms, facilitated microbial aggregation, and regulated DIET-associated gene expression as a microbial mechanism. Finally, we also discussed the challenges of biochar in practical application. This review elucidated the role of DIET facilitated by biochar in the AD system, which would advance our understanding of the DIET mechanism underpinning the interaction of biochar and anaerobic microorganisms. However, direct evidence for the occurrence of biochar-facilitated DIET still requires further investigation.
Collapse
Affiliation(s)
- Kaoming Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yuepeng Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhiquan Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
13
|
Eskikaya O, Isik Z, Arslantas C, Yabalak E, Balakrishnan D, Dizge N, Rao KS. Preparation of hydrochar bio-based catalyst for fenton process in dye-containing wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 216:114357. [PMID: 36122703 DOI: 10.1016/j.envres.2022.114357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The use of synthetic dyes in the textile industry pollutes a huge amount of water. Thus, wastewater discharged from many textile companies to the receiving environment without being treated causes serious environmental and human health problems. The development of new techniques has become imperative. In this study, it was aimed to remove anionic dye (RR180) and cationic dye (BR18) by Fenton-like and adsorption process with hydrochars obtained from laurel leaves and watermelon peels. In the comparison of the adsorption and Fenton-like processes used in the dye removal of the produced bio-based materials, the Fenton-like process was selected in order to enhance the highest removal efficiency. The effects of various operating factors such as solution pH, amount of catalysts, hydrogen peroxide (H2O2) concentration, and initial dye concentration were evaluated on both dyes removal. The experimental results demonstrated that 99.8% RR180 dye and 98.8% BR18 dye removal efficiency were observed for an initial dye concentration of 100 mg/L with an adsorbent concentration of 1 g/L, H2O2 concentration of 15 μL/L, and optimum pH at the end of 60 min of reaction time. It was observed that an increase in initial dye concentration caused to decrease the dye removal efficiency. The optimum pH for the highest RR180 and BR18 dye removal was 4 and 6, respectively. It was observed that the increase in H2O2 concentration in the solution also decreased the dye removal efficiency. It turned out that catalysts obtained from hydrochars are an effective process for the high removal performance of cationic and anionic dyes.
Collapse
Affiliation(s)
- Ozan Eskikaya
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Ceren Arslantas
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey
| | - Erdal Yabalak
- Department of Chemistry, Mersin University, 33343, Mersin, Turkey
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia.
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Koppula Srinivas Rao
- Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, Telangana, India.
| |
Collapse
|
14
|
Chen S, Zhong W, Ning Z, Niu J, Feng J, Qin X, Li Z. Effect of homemade compound microbial inoculum on the reduction of terramycin and antibiotic resistance genes in terramycin mycelial dreg aerobic composting and its mechanism. BIORESOURCE TECHNOLOGY 2023; 368:128302. [PMID: 36403916 DOI: 10.1016/j.biortech.2022.128302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In order to tackle the issue of terramycin mycelial dreg (TMD) diagnosis and removal of terramycin and antibiotic resistance genes (ARGs), this study adopted aerobic composting (AC) technology and added homemade compound microbial inoculum (HCMI) to promote the AC of TMD and enhance the removal of terramycin and ARGs. The findings demonstrated that terramycin residue could be basically harmless after AC. Moreover, HCMI not only reduced QacB and tetH but also increased the degradation rates of VanRA, VanT, and dfrA24 by 40.81%, 5.65%, and 54.18%, respectively. The HCMI improved the removal rate of ARG subtypes to a certain extent. According to redundancy analysis, during AC, the succession of the microbial community had a stronger influence on the variance of ARG subtype than the environmental conditions. Differences in the abundance of various bacteria due to changes in temperature may be an intrinsic mechanism for the variation of ARG subtypes.
Collapse
Affiliation(s)
- Sainan Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jing Feng
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Agricultural Planning and Engineering, Beijing 100125, China
| | - Xue Qin
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Zaixing Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
15
|
Zhang Y, Li L, Ren Z, Yu Y, Li Y, Pan J, Lu Y, Feng L, Zhang W, Han Y. Plant-scale biogas production prediction based on multiple hybrid machine learning technique. BIORESOURCE TECHNOLOGY 2022; 363:127899. [PMID: 36075348 DOI: 10.1016/j.biortech.2022.127899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The parameters from full-scale biogas plants are highly nonlinear and imbalanced, resulting in low prediction accuracy when using traditional machine learning algorithms. In this study, a hybrid extreme learning machine (ELM) model was proposed to improve prediction accuracy by solving imbalanced data. The results showed that the best ELM model had a good prediction for validation data (R2 = 0.972), and the model was developed into the software (prediction error of 2.15 %). Furthermore, two parameters within a certain range (feed volume (FV) = 23-45 m3 and total volatile fatty acids of anaerobic digestion (TVFAAD) = 1750-3000 mg/L) were identified as the most important characteristics that positively affected biogas production. This study combines machine learning with data-balancing techniques and optimization algorithms to achieve accurate predictions of plant biogas production at various loads.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Linhui Li
- College of Artificial Intelligence, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Zhonghao Ren
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yating Yu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China.
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yanjuan Lu
- Beijing Fairyland Environmental Technology Co., Ltd, Beijing 100094, PR China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha 410083, PR China
| | - Yongming Han
- College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
16
|
Muratçobanoğlu H, Begüm Gökçek Ö, Muratçobanoğlu F, Mert RA, Demirel S. Biomethane enhancement using reduced graphene oxide in anaerobic digestion of municipal solid waste. BIORESOURCE TECHNOLOGY 2022; 354:127163. [PMID: 35429595 DOI: 10.1016/j.biortech.2022.127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The present research investigated the impact of reduced graphene oxide (rGO) addition on the semi-continuous anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) in the range of 0.5-10 gVolatileSolid(VS)/Lreactorday organic loading rates (OLR). Adding rGO enhanced the rate and yield of biomethane production, and the maximum biomethane increment rate was obtained as 110% at an OLR of 4.0 gVS/Lreactorday. However, after increasing the OLR to 6 gVS/Lreactorday, there was a dramatic decrease in biomethane production because of volatile fatty acid (VFA) accumulation. Methanotrix is the predominant archaeal genus at OLRs lower than 6 gVS/Lreactorday in reactors (89-97%). An increment in biomethane production was associated with the higher abundance of the Methanothrix genus in the rGO-supported reactor (rG) than in the control reactor (rC).
Collapse
Affiliation(s)
- Hamdi Muratçobanoğlu
- Department of Environmental Engineering, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | - Öznur Begüm Gökçek
- Department of Environmental Engineering, Nigde Omer Halisdemir University, Nigde 51240, Turkey; Department of Energy Science and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey
| | - Fatma Muratçobanoğlu
- Department of Environmental Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Ruhullah Ali Mert
- Department of Environmental Engineering, Nigde Omer Halisdemir University, Nigde 51240, Turkey
| | - Sevgi Demirel
- Department of Environmental Engineering, Nigde Omer Halisdemir University, Nigde 51240, Turkey; Department of Energy Science and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey
| |
Collapse
|
17
|
Li X, Wu M, Xue Y. Nickel-loaded shrimp shell biochar enhances batch anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2022; 352:127092. [PMID: 35367323 DOI: 10.1016/j.biortech.2022.127092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the effectiveness of shrimp shell biochar (SBC) and nickel (Ni) loaded SBC in increasing methane yield during anaerobic digestion of food waste. The results indicated that the methane yields of control (without SBC), SBC, SBC loaded with the low concentration of Ni, and SBC loaded with the high concentration of Ni were 81.8, 116.1, 134.7, and 99.2 mL/(g·VS), respectively. SBC promoted the efficiency and stability of the whole anaerobic digestion process including hydrolysis, volatile fatty acid conversion and methanogenesis. While the invigorating effect of loaded Ni at the low concentration of 0.88 mg/g was mainly concentrated in methanogenesis, the inhibition effect of the high Ni concentration was comprehensive. SBC helped Methanosarcina proliferation, and low concentration Ni promoted the number and activity of Methanosarcina and Methanosaeta. The results show that biochar loaded with a low level of trace elements such as Ni can promote the anaerobic digestion process.
Collapse
Affiliation(s)
- Xiao Li
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Mingxuan Wu
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China.
| |
Collapse
|