1
|
Wang X, Huang S, Wang S, Chen S, Dong S, Zhu Y. Effect of D-limonene on volatile fatty acids production from anaerobic fermentation of waste activated sludge under pH regulation: performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122828. [PMID: 39383742 DOI: 10.1016/j.jenvman.2024.122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
D-limonene extracted from citrus peels possesses an inhibitory effect on methanogenic archaea. This study is aimed to bridge the research gap on the influence of D-limonene on volatile fatty acids (VFA) production from waste activated sludge (WAS) and to address the low VFA yield in standalone anaerobic fermentation of WAS. When the initial pH was not controlled, 1.00 g/g TSS D-limonene resulted in a VFA accumulation of 1175.45 ± 101.36 mg/L (174.45 ± 8.13 mgCOD/gVS). When the initial pH was controlled at 10 and the D-limonene concentration was 0.50 g/g TSS, the VFA accumulation reached 2707.44 ± 183.65 mg/L (445.51 ± 17.10 mgCOD/gVS). The pH-regulated D-limonene treatment enhanced solubilization and acidification, slightly inhibited hydrolysis, and significantly suppressed methanogenesis. D-limonene under alkaline conditions can increase the relative abundance of Clostridium_sensu_stricto, significantly enhancing acidification. Moreover, it markedly inhibited methanogenesis by particularly reducing the relative abundance of Methanothrix that was responsible for acetate consumption, thus favoring the accumulation of VFA. The research reveals the potential mechanism of pH regulation and D-limonene on anaerobic fermentation acid production, providing a theoretical basis for improving the acid production performance of the anaerobic fermentation of WAS.
Collapse
Affiliation(s)
- Xinyun Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shifa Huang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shihao Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Siyuan Chen
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shanyan Dong
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China.
| | - Yichun Zhu
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China
| |
Collapse
|
2
|
Li Z, Wang B, Wang F, Sun B, Li L. Flow dynamics and turbulent coherent structures around sediment reduction plates of a sewer system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121594. [PMID: 38971061 DOI: 10.1016/j.jenvman.2024.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
In the management of urban drainage networks, great interest has been generated in the removal of sediments from sewer systems. The unsteady three-dimensional (3D) flow and turbulent coherent structures surrounding sediment reduction plates in a sewer system are investigated by means of the detached-eddy simulation (DES). Particular emphasis is given to detailing the instantaneous velocity and vorticity fields within the grooves, along with an examination of the three-dimensional, long-term, average flow structure at a Reynolds number of approximately 105. Velocity vectors demonstrate continuous flapping of the flow on the groove wall, periodically interacting with ejections of positive and negative vorticity originating from the grooves. The interaction between the three-dimensional groove flow and the shear flow leads to the downstream transport of patches of positive and negative vorticity, which significantly influence sediment transport. The high-velocity shear flows and strong vortices generated in undulating topography, as identified by the Q-criteria, are the key factors contributing to the efficient sediment reduction capabilities of the sediment reduction plates. The sediment reduction plates with partially enclosed structures exhibit low sedimentation rates in grooves on the plate, a broader acceleration region, and a lesser impact on the flow capacity. The results improve the understanding of the hydrodynamics and turbulent coherent structures surrounding the sediment reduction plates while elucidating the driving factors behind the enhancement of sediment scouring and suspension capacities. These results indicate that the redesign of the plates as partially enclosed structures contributes to further improving their sediment reduction performance.
Collapse
Affiliation(s)
- Zhiwei Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bing Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China.
| | - Feifei Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Sun
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China.
| | - Liutao Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Lu J, Liu J, Li X, Zhang Z, Wang S, Pang H. Sewer sediment adhesion degeneration and gelatinous biopolymer deconstruction by structural cation chelation and alkaline macromolecule hydrolysis for improving hydraulic erosion. CHEMOSPHERE 2024; 356:141902. [PMID: 38582158 DOI: 10.1016/j.chemosphere.2024.141902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Sediment siltation has been regarded as the serious challenge in sewer system, which dominantly root in the gelatinous extracellular polymeric substance (EPS) structure and cohesive ability. Considering the crucial roles of divalent cation bridging and macromolecular biopolymer winding in sediment EPS formation and adhesive behavior, an innovative combination strategy of sodium pyrophosphate (SP)-mediated divalent cation chelation and alkaline biopolymer hydrolysis was developed to degenerate sediment adhesion. At the SP dosage of 0.25 g/g TS and the alkaline pH 12, the SP + pH 12 treatment triggered structural transformation of aromatic proteins (α-helix to β-turn) and functional group shifts of macromolecular biopolymers. In this case, the deconstruction and outward dissolution of gelatinous biopolymers were achievable, including proteins (tyrosine-like proteins, tryptophan-like proteins), humic acids, fulvic acids, polysaccharides and various soluble microbial products. These were identified as the major driving forces for sediment EPS matrix disintegration and bio-aggregation deflocculation. The extraction EPS content was obviously increased by 18.88 mg COD/g TS. The sediment adhesion was sensitive to EPS matrix damage and gelatinous biopolymer deconstruction, leading to considerable average adhesion degeneration to 0.98 nN with reduction rate of 78.32%. As such, the sediments could be disrupted into dispersive fragments with increased surface electronegativity and electric repulsion (up to -45.6 mV), thereby the sediment resistance to hydraulic erosion was impaired, providing feasibility for in-situ sediment floating and removal by gravity sewage flow in sewer.
Collapse
Affiliation(s)
- Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China.
| | - Jinxuan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xingwang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sheping Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi 'an Municipal Design and Research Institute Co., LTD, Xi'an 710055, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China.
| |
Collapse
|
4
|
Pasciucco F, Pasciucco E, Castagnoli A, Iannelli R, Pecorini I. Comparing the effects of Al-based coagulants in waste activated sludge anaerobic digestion: Methane yield, kinetics and sludge implications. Heliyon 2024; 10:e29282. [PMID: 38623244 PMCID: PMC11016704 DOI: 10.1016/j.heliyon.2024.e29282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Due to its effectiveness and ease of application, the process of flocculation and coagulation is often used for pollution removal in wastewater treatment. Most of these coagulants precipitate and accumulate in waste activated sludge (WAS), and could negatively affect sludge treatments, as observed for anaerobic digestion. Nowadays, wastewater treatment plants (WWTPs) are widely discussed because of the current paradigm shift from linear to circular economy, and the treatments performed at the facility should be planned to avoid or reduce adverse effects on other processes. The aim of this study was to compare the impact of poly aluminum chloride (PAC) and aluminum sulfate (AS) on WAS anaerobic digestion, by feeding replicate serum reactors with different levels of coagulant (5, 10 and 20 mg Al/g TS). Reactors without the addition of any coagulants represented the control group. Results revealed that Al-based coagulants inhibited methane production, which decreased as the coagulant addition increased. The inhibition was much more severe in AS-conditioned reactors, showing average reductions in methane yield from 14.4 to 31.7%, compared to the control (167.76 ± 1.88 mL CH4/g VS). Analytical analysis, FTIR and SEM investigations revealed that the addition of coagulants affected the initial conditions of the anaerobic reactors, penalizing the solubilization, hydrolysis and acidogenesis phases. Furthermore, the massive formation of H2S in AS-conditioned reactors played a key role in the suppression of methane phase. On the other hand, the use of coagulant can promote the accumulation and recovery of nutrient in WAS, especially in terms of phosphorus. Our findings will expand research knowledge in this field and guide stakeholders in the choice of coagulants at full scale plant. Future research should focus on reducing the effect of coagulants on methane production by modifying or testing new types of flocculants.
Collapse
Affiliation(s)
- Francesco Pasciucco
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Erika Pasciucco
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Alessio Castagnoli
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Renato Iannelli
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Isabella Pecorini
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
5
|
Gao X, Zhang L, Liu J, Zhang Y, Peng Y. First application of the novel anaerobic/aerobic/anoxic (AOA) process for advanced nutrient removal in a wastewater treatment plant. WATER RESEARCH 2024; 252:121234. [PMID: 38310803 DOI: 10.1016/j.watres.2024.121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
The stringent effluent quality standards in wastewater treatment plants (WWTPs) can effectively mitigate environmental issues such as eutrophication by reducing the discharge of nutrients into water environments. However, the current wastewater treatment process often struggles to achieve advanced nutrient removal while also saving energy and reducing carbon consumption. The first full-scale anaerobic/aerobic/anoxic (AOA) system was established with a wastewater treatment scale of 40,000 m3/d. Over one year of operation, the average TN and TP concentration in the effluent of 7.53 ± 0.81 and 0.37 ± 0.05 mg/L was achieved in low TN/COD (C/N) ratio (average 5) wastewater treatment. The post-anoxic zones fully utilized the internal carbon source stored in pre-anaerobic zones, removing 41.29 % of TN and 36.25 % of TP. Intracellular glycogen (Gly) and proteins in extracellular polymeric substances (EPS) served as potential drivers for post-anoxic denitrification and phosphorus uptake. The sludge fermentation process was enhanced by the long anoxic hydraulic retention time (HRT) of the AOA system. The relative abundance of fermentative bacteria was 31.66 - 55.83 %, and their fermentation metabolites can provide additional substrates and energy for nutrient removal. The development and utilization of internal carbon sources in the AOA system benefited from reducing excess sludge production, energy conservation, and advanced nutrient removal under carbon-limited. The successful full-scale validation of the AOA process provided a potentially transformative technology with wide applicability to WWTPs.
Collapse
Affiliation(s)
- Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong Zhang
- Beijing Belant Environmental Technology Co., Ltd., Beijing 100071, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Pang H, Li X, Qin Q, Wei Q, Zhang Y, Xu D, Xu Y, Zhang Z, Lu J. In-situ sewer sediment self-cleaning by plant ash-driven hydrolysis: Impairing adhesion and hydraulic erosion resistance from gelatinous biopolymer molecule deconstruction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168276. [PMID: 37923257 DOI: 10.1016/j.scitotenv.2023.168276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The gelatinous structure and adhesion of sediments induced strong hydraulic erosion resistance and bottom siltation, which brought about serious challenges in sewer management. The in-situ sediment self-cleaning technology with low energy and labor consumption has become urgent demand. This study proposed an innovative plant ash-triggered molecule hydrolysis strategy for driving sewer sediment self-cleaning. Plant ash treatment at the optimal dosage of 0.10 g/g SS promoted molecular deconstruction and dissolution of aromatic proteins (tryptophan-like and tyrosine-like proteins), humic acids (fulvic acid-like and humic acid-like substances) and carbohydrates with secondary structure deflocculation (α-helix to β-turn), meanwhile numerous microbial cells were lysed, contributing to linkage breakage in extracellular polymeric substance (EPS). The gelatinous EPS disruption and outward migration with cohesion reduction were achievable. Sediment adhesion was vulnerable to EPS structural damage, which was degenerated by 91.14 %. Correspondingly, the sediment matrix structure was observably disintegrated into dispersive and small fragments, with increased surface electronegativity and eliminated adhesive bio-agglomeration. Thereby, the sensitivity of sediments to hydraulic erosion was greatly improved. In this case, substantial organic and inorganic sediment particles were solubilized and downstream transported by gravity sewage flow. Such plant ash-triggered hydrolysis provided a sustainable strategy for sediment self-cleaning in "waste control by waste" pattern, which improved sediment floating by 7.25-9.57 times. Considerable economic benefits of 35.56-123.46 CNY/(sewer meter length) were obtained compared with traditional mechanical flushing approaches. The findings might provide theoretical and engineering inspirations for solving sewer sediment issues.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xingwang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiwen Qin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuyao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dong Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yumeng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China.
| |
Collapse
|
7
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
8
|
Cheng H, Qin H, Liang L, Li YY, Liu J. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: Focusing on a solution perspective. BIORESOURCE TECHNOLOGY 2023; 381:129117. [PMID: 37141995 DOI: 10.1016/j.biortech.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
In this paper, the state-of-the-art information on the anammox-HAP process is summarized. The mechanism of this process is systematically expounded, the enhancement of anammox retention by HAP precipitation and the upgrade of phosphorus recovery by anammox process are clarified. However, this process still faces several challenges, especially how to deal with the ∼ 11% nitrogen residues and to purify the recovered HAP. For the first time, an anaerobic fermentation (AF) combined with partial denitrification (PD) and anammox-HAP (AF-PD-Anammox-HAP) process is proposed to overcome the challenges. By AF of the organic impurities of the anammox-HAP granular sludge, organic acid is produced to be used as carbon source for PD to remove the nitrogen residues. Simultaneously, pH of the solution drops, which promotes the dissolution of some inorganic purities such as CaCO3. In this way, not only the inorganic impurities are removed, but the inorganic carbon is supplied for anammox bacteria.
Collapse
Affiliation(s)
- Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lei Liang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
9
|
Li D, Wang X, Qin Z, Yu S, Chen J, Zhou J. Combined engineering of l-sorbose dehydrogenase and fermentation optimization to increase 2-keto-l-gulonic acid production in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 372:128672. [PMID: 36702324 DOI: 10.1016/j.biortech.2023.128672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
One-step fermentation to produce 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, is a long-term goal. Improvement of the enzyme's activity through engineering could benefit 2-KLG production. This study aimed to conduct a semi-rational design of l-sorbose dehydrogenase (SDH) through structure-directed, to screen mutants that could enhance the 2-KLG titer. First, the predicted structure of SDH was obtained using AlphaFold2. The key mutation sites in the substrate pocket were identified by Ala scanning. Subsequently, the mutant V336I/V368A was obtained by iterative saturation mutagenesis, which increased the yield of 2-KLG 1.9-fold. Finally, 5.03 g/L of 2-KLG was obtained by a two-stage temperature control fermentation method, and the conversion rate was 50%. Furthermore, experiments showed that knockdown of the l-sorbose-associated phosphotransferase system delays 2-KLG production. The results show that the production of 2-KLG was effectively increased through a combination of SDH engineering and fermentation optimization.
Collapse
Affiliation(s)
- Dong Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhijie Qin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Zhao W, You J, Yin S, He S, Feng L, Li J, Zhao Q, Wei L. Calcium peroxide and freezing co-pretreatment enhancing short-chain fatty acids production from waste activated sludge towards carbon-neutral sludge treatment. BIORESOURCE TECHNOLOGY 2023; 367:128273. [PMID: 36347477 DOI: 10.1016/j.biortech.2022.128273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Short-chain fatty acids (SCFAs) recovery through anaerobic fermentation is a promising technology to achieve carbon-neutral in waste activated sludge (WAS) management. After 0.15 g CaO2/g volatile suspended solids (VSS) addition and three-cycle freezing co-pretreatments, the maximal SCFAs production of 438.5 mg COD/g VSS was achieved within 4 days fermentation, and more than 70 % of SCFAs was composed of acetate and propionate, which achieved a higher level than reported in previous studies. Mechanism explorations elucidated that co-pretreatment triggered sludge solubilization, promoting the release of biodegradable organics, providing more biodegradable substrates for SCFAs generation. Further microbial community analysis indicated that the abundances of hydrolytic microorganisms and acidogens were enriched, whereas methanogens were inhibited. Besides, environmental analysis suggested that co-pretreatment could achieve carbon reduction benefits of 0.116-0.291 ton CO2/ton WAS, demonstrating its huge carbon-neutral potential benefits.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shilei Yin
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|