1
|
Ding L, Zamalloa C, Lin H, Hu B. Bio-electrochemically assisted sulfide, phosphorus, and nitrogen remediation in continuous anaerobic digestion of dairy manure with improved biogas production. CHEMOSPHERE 2025; 376:144288. [PMID: 40056813 DOI: 10.1016/j.chemosphere.2025.144288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Anaerobic digestion (AD) is an industrial practice to properly manage and valorize dairy manure, whereas impurities in biogas and excessive nutrients in digestate always require post-treatment. In this study, integration of bio-electrochemical (BEC) treatment with AD of dairy manure was proposed to simultaneously improve biogas production, reduce hydrogen sulfide (H2S) release, and remediate nutrients in digestate. A continuous stirred tank reactor (CSTR) and a BEC unit using stainless steel mesh electrodes at applied voltages of 0.5-0.8 V were integrated for continuous AD treatment of liquid dairy manure. At a relatively short hydraulic retention time of 20 d and a high voltage of 0.8 V, the biogas production of CSTR-BEC significantly outperformed that of the control operated in an open circuit mode. The methane (CH4) content in the biogas from CSTR-BEC at 0.8 V reached 71.1%, leading to a specific CH4 yield of CSTR-BEC (238.6 mL/gVS) higher by 42.5% than that of the control. The higher applied voltage of 0.8 V in CSTR-BEC also secured significant aqueous sulfide and gaseous H2S removals of 58.6% and 89%, respectively. Meanwhile, stronger electrochemical reactions in CSTR-BEC resulted in efficient removals of soluble and total phosphorus from dairy manure at a range of 49.5-63.7%. The compositional analysis of cathode precipitates implies that the release of iron ions from the sacrificial anode for further precipitation and adsorption might be the main route for sulfide and phosphorus removal. The average power consumption of the BEC unit (1.024 kWh/m3/d) at 0.8 V was 7.9-fold that at 0.5 V, whereas the net energy gain of CSTR-BEC (7.42 MJ/m3/d) was still comparable to that of the control because of the improved CH4 production. This bio-electrochemically assisted AD system offers a promising perspective in cleaner bioenergy production with concurrent considerable contaminants remediation from dairy manure.
Collapse
Affiliation(s)
- Lingkan Ding
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Carlos Zamalloa
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Hongjian Lin
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Hu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
2
|
Callegari A, Tucci M, Aulenta F, Cruz Viggi C, Capodaglio AG. Anaerobic sludge digestion enhancement with bioelectrochemical and electrically conductive materials augmentation: A state of the art review. CHEMOSPHERE 2025; 372:144101. [PMID: 39798721 DOI: 10.1016/j.chemosphere.2025.144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilization of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment. As for in-process amendments, iron, micro and macro-nutrients, ashes from waste incineration and nanoparticles addition have been studied for the improvement of enzymatic reactions. Recently, use of electrically conductive materials has been credited with the possibility to accelerate and stabilize the conversion of organic substrates to methane. The possibility of increasing both biogas generation and its relative biomethane content by interfacing anaerobic digestion with bioelectrochemical systems was also postulated. This review addresses the research gap surrounding the integration of anaerobic digestion with novel technologies, particularly bioelectrochemical systems, to enhance biogas production and methane enrichment. While existing studies focus on pre-treatment and in-process amendments, the feasibility, mechanisms, and benefits of such integration remain underexplored. By critically evaluating the current state of the art, this review identifies the potential of bioelectrochemical integration to improve energy recovery and process stability, while highlighting key challenges and research needs for advancing these technologies toward practical implementation.
Collapse
Affiliation(s)
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy; National Biodiversity Future Center, Palermo, 90133, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti, 00010, RM, Italy
| | | |
Collapse
|
3
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B. Enhancing the anaerobic sludge characteristics and inorganic impurities removal from synthesis wastewater through integration of electrocoagulation process with up-flow anaerobic sludge blanket reactor. Bioprocess Biosyst Eng 2025; 48:233-245. [PMID: 39585372 DOI: 10.1007/s00449-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
The present study investigated effects of coupling electrocoagulation (EC) process with an anaerobic digestion bioreactor, namely up-flow anaerobic sludge blanket (UASB), for the synthetic wastewater treatment. The EC-UASB mode of operation consisted of one anode and two cathodes subjected to an intermittent electrical current (10 min ON/30 min OFF) with current density of 1.5 mA/cm2. In light of this integration, the concentration of mixed liquor suspended solids and mixed liquor volatile suspended solids within anaerobic granular sludge (AGS) increased by 20.0 ± 1.4% and 12.8 ± 0.8%, respectively. The results of sludge volume index, loosely and tightly bound extracellular polymeric substances and their constituents (protein and carbohydrate) revealed that through this integration the quality of AGS has been improved. Furthermore, results of scanning electron microscopy and Fourier-transform infrared spectroscopy showed alteration in the morphology and functional groups of AGS, respectively. Additionally, this combination has demonstrated promising results in terms of performance improvement by increasing the removal efficiency of total dissolved solids by 12.1 ± 0.3% and reducing the ionic pollution in treated wastewater. However, the integration of the EC system within the UASB resulted in energy consumption and operating cost of 1.33 kWh/m3 and 0.099 USD/m3, respectively.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Ao TJ, Wu J, Li K, Chandra R, Zhao XQ, Tang YQ, Liu CG, Bai FW. Cellulosic ethanol stillage for methane production by integrating single-chamber anaerobic digestion and microbial electrolysis cell system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175814. [PMID: 39197773 DOI: 10.1016/j.scitotenv.2024.175814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Anaerobic digestion provides a solution to the inefficient use of carbon resources caused by improper disposal of corn stover-based ethanol stillage (CES). In this regard, we developed a single-chamber anaerobic digestion integrated microbial electrolysis cells system (AD-MEC) to convert CES into biogas while simultaneously upgrading biogas in-situ by employing voltages ranging from 0 to 2.5 V. Our results demonstrated that applying 1.0 V increased the CH4 yield by 55 % and upgraded the CH4 content in-situ to 82 %. This voltage also promoted the well-formed biofilm on the electrodes, resulting in a 20-fold increase in current. However, inhibition was observed at high voltages (1.5-2.5 V), suppressing syntrophic organic acid-oxidizing bacteria (SOB). The dissociation between SOB and methanogens led to accumulation of propionic and butyric acid, which, in turn, inhibited methanogens. The degradation of CES was accelerated by unclassified_o_norank_c_Desulfuromonadia on the anode, likely leading to an increase in mixotrophic methanogenesis due to the synergistic interaction among Aminobacterium, Sedimentibacter, and Methanosarcina. Furthermore, the enrichment of electroactive bacteria (EB) such as Enterococcus and Desulfomicrobium likely facilitates direct interspecies electron transfer to Methanobacterium, thereby promoting the conversion of CO2 to CH4 through hydrogenotrophic methanogenesis. Rather than initially stimulating the EB in the bulk solution to accelerate the start-up process of AD, our study revealed that applying mild voltage up to 1.0 V tended to mitigate the negative impact on the original microorganisms, as it gradually enriched EB on the electrode, thereby enhancing biogas production.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jie Wu
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 main mall, Vancouver V6T 1N4, Canada
| | - Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Chandra
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Trinity Western University, 22500 University Dr, Langley, BC V2Y 1Y1, Canada.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
6
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
7
|
Guo M, Guo M, Wang Y, Li M, Qi X, Wei S, Jia X. The influencing mechanism of AD-MEC domesticated sludge to alleviates propionate accumulation and enhances methanogenesis. BIORESOURCE TECHNOLOGY 2024; 393:129996. [PMID: 37951554 DOI: 10.1016/j.biortech.2023.129996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Anaerobic digestion combined with microbial electrolysis cell (AD-MEC) could maintain stable reactor operation and alleviating the anaerobic digestion (AD) propionate accumulation. In this study, the addition of sludge to AD-MEC was examined as a way to enhance system performance and explore the microbial interaction mechanism after electric field domestication. The results showed that under 1000 and 4000 mg/L propionate, the methane production of the sludge from AD-MEC increased by 34.29 % and 9.70 %, respectively, as compared to the AD sludge. Gompertz fitting analysis showed that sludge after electric field domestication enhancing its continuous methanogenic capacity. Further analysis showed that sludge extracellular electron transfer capacity was enhanced in AD-MEC and that its domesticated granular sludge formed a microbial community function with acid-degrading synergistic methanogenesis. The results of the study may provide theoretical support and optimization strategies for the application of AD-MEC system.
Collapse
Affiliation(s)
- Meixin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Sijia Wei
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Zhang X, Fan Y, Hao T, Chen R, Zhang T, Hu Y, Li D, Pan Y, Li YY, Kong Z. Insights into current bio-processes and future perspectives of carbon-neutral treatment of industrial organic wastewater: A critical review. ENVIRONMENTAL RESEARCH 2024; 241:117630. [PMID: 37993050 DOI: 10.1016/j.envres.2023.117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
With the rise of the concept of carbon neutrality, the current wastewater treatment process of industrial organic wastewater is moving towards the goal of energy conservation and carbon emission reduction. The advantages of anaerobic digestion (AD) processes in industrial organic wastewater treatment for bio-energy recovery, which is in line with the concept of carbon neutrality. This study summarized the significance and advantages of the state-of-the-art AD processes were reviewed in detail. The application of expanded granular sludge bed (EGSB) reactors and anaerobic membrane bioreactor (AnMBR) were particularly introduced for the effective treatment of industrial organic wastewater treatment due to its remarkable prospect of engineering application for the high-strength wastewater. This study also looks forward to the optimization of the AD processes through the enhancement strategies of micro-aeration pretreatment, acidic-alkaline pretreatment, co-digestion, and biochar addition to improve the stability of the AD system and energy recovery from of industrial organic wastewater. The integration of anaerobic ammonia oxidation (Anammox) with the AD processes for the post-treatment of nitrogenous pollutants for the industrial organic wastewater is also introduced as a feasible carbon-neutral process. The combination of AnMBR and Anammox is highly recommended as a promising carbon-neutral process for the removal of both organic and inorganic pollutants from the industrial organic wastewater for future perspective. It is also suggested that the AD processes combined with biological hydrogen production, microalgae culture, bioelectrochemical technology and other bio-processes are suitable for the low-carbon treatment of industrial organic wastewater with the concept of carbon neutrality in future.
Collapse
Affiliation(s)
- Xinzheng Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuqin Fan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dapeng Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
9
|
Bhattacharya A, Garg S, Chatterjee P. Examining current trends and future outlook of bio-electrochemical systems (BES) for nutrient conversion and recovery: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86699-86740. [PMID: 37438499 DOI: 10.1007/s11356-023-28500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.
Collapse
Affiliation(s)
- Ayushman Bhattacharya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Shashank Garg
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285.
| |
Collapse
|
10
|
Gao Y, Cai T, Yin J, Li H, Liu X, Lu X, Tang H, Hu W, Zhen G. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis. BIORESOURCE TECHNOLOGY 2023; 376:128835. [PMID: 36889605 DOI: 10.1016/j.biortech.2023.128835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Granular sludge disintegration and washing out pose a challenge to up-flow anaerobic sludge bed (UASB) reactor treating methanolic wastewater. Herein, in-situ bioelectrocatalysis (BE) was integrated into UASB (BE-UASB) reactor to alter microbial metabolic behaviors and enhance the re-granulation process. BE-UASB reactor exhibited the highest methane (CH4) production rate of 388.0 mL/Lreactor/d and chemical oxygen demand (COD) removal of 89.6 % at 0.8 V. Sludge re-granulation was strengthened with particle size over 300 µm of up to 22.4%. Bioelectrocatalysis stimulated extracellular polymeric substances (EPS) secretion and formation of granules with rigid [-EPS-cell-EPS-] matrix by enhancing the proliferation of key functional microorganisms (Acetobacterium, Methanobacterium, and Methanomethylovorans) and diversifying metabolic pathways. Particularly, a high Methanobacterium richness (10.8%) drove the electroreduction of CO2 into CH4 and reduced its emissions (52.8%). This study provides a novel bioelectrocatalytic strategy for controlling granular sludge disintegration, which will facilitate the practical application of UASB in methanolic wastewater treatment.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Hongxia Tang
- Shanghai Solid Waste and Chemicals Management Center, Shanghai, No. 55, Sanjiang Road, Xuhui District, PR China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
11
|
Li Y, Wang S, Dong R, Li X. A large cathode surface area promotes electromethanogenesis at a proper external voltage in a single coaxial microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161721. [PMID: 36682571 DOI: 10.1016/j.scitotenv.2023.161721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) is currently encountering constraints on electromethanogenesis. The electrode configuration modification can be a simple yet efficient way to improve electromethanogenesis. This study evaluated two coaxial electrode configurations (large anode and small cathode: A10C1; small anode and large cathode: A1C10) using carbon felt as the electrode material. At an external voltage of 1.7 V, CH4 content was found exclusively higher in A1C10 (11 % and 13 % higher for acetate-fed and cow manure-fed, respectively) than that of the control reactors. Consequently, CH4 production was 13 % and 29 % higher in acetate-fed and CM-fed A1C10, respectively. The strengthened electromethanogenesis was attributed to the enrichment of interspecies hydrogen transfer microbes (i.e., Mesotoga and Bathyarchaeia). The coaxial configuration with a large cathode surface area demonstrated a viable stereotype in MEC-AD for improved waste treatment and energy recovery.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Siqi Wang
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Renjie Dong
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Xin Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China.
| |
Collapse
|
12
|
Show KY, Chang JS, Lee DJ. Degradation of high-strength acrylic acid wastewater with anaerobic granulation technology: A mini-review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121018. [PMID: 36610649 DOI: 10.1016/j.envpol.2023.121018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The anaerobic granulation technology has been successfully applied full-scale for treating high-strength recalcitrant acrylic acid wastewater. This mini-review highlighted the recalcitrance of acrylic acid and its biological degradation pathways. And then, the full-scale practices using anaerobic granulation technology for acrylic wastewater treatment were outlined. The granules are proposed to provide barriers for high-concentration acrylic acid to the embedded anaerobic microbes, maintaining its high degradation rate without apparent substrate inhibition. Based on this proposal, the prospects of applying anaerobic granulation technology to handle a wide range of high-strength recalcitrant wastewaters, to improve the current process performances, and to recover renewable resources were delineated. The anaerobic granulation for high-strength recalcitrant wastewater treatment is an emergent technology that can assist in fulfilling the appeals of the circular bioeconomy of modern society.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co., Ltd., Nanjing, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
13
|
Yellezuome D, Zhu X, Liu X, Liu X, Liu R, Wang Z, Li Y, Sun C, Hemida Abd-Alla M, Rasmey AHM. Integration of two-stage anaerobic digestion process with in situ biogas upgrading. BIORESOURCE TECHNOLOGY 2023; 369:128475. [PMID: 36509302 DOI: 10.1016/j.biortech.2022.128475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
High impurity concentration of biogas limits its wide commercial utilization. Therefore, the integration of two-stage anaerobic digestion process with in situ biogas upgrading technologies is reviewed, with emphasis on their principles, main influencing factors, research success, and technical challenges. The crucial factors that influence these technologies are pH, alkalinity, and hydrogenotrophic methanogenesis. Hence, pH fluctuation and low gas-liquid mass transfer of H2 are some major technical challenges limiting the full-scale application of in situ upgrading techniques. Two-stage anaerobic digestion integration with various in situ upgrading techniques to form a hybrid system is proposed to overcome the constraints and systematically guide future research design and advance the development and commercialization of these techniques. This review intends to provide the current state of in situ biogas upgrading technologies and identify knowledge gaps that warrant further investigation to advance their development and practical implementation.
Collapse
Affiliation(s)
- Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xin Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xuwei Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zengzhen Wang
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yingkai Li
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez 43721, Egypt
| |
Collapse
|
14
|
Wu W, Li R. Degradation and solid-liquid distribution of antibiotics in microbial electrolysis cells treating sewage sludge: Effects of temperature and applied voltage. BIORESOURCE TECHNOLOGY 2023; 368:128352. [PMID: 36403914 DOI: 10.1016/j.biortech.2022.128352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The microbial electrolysis cell (MEC) is a promising technology for antibiotic removal in sewage sludge. Temperature and voltage are key operating factors, but information about their effects on antibiotic degradation in MECs is still limited. Therefore, the effects of the temperature and applied voltage on the degradation and solid-liquid distribution of antibiotics in MECs treating sewage sludge were investigated. The results showed that the thermophilic (55 °C) MEC (T-MEC) at 0.8 V achieved the highest total antibiotic removal efficiency of 58.7 % due to the increase in bioelectrochemical activity for anodes and microbial activity in suspended sludge. The solid-liquid migration of antibiotics was facilitated, which had a significant positive correlation with antibiotic removal. Biodegradation was the rate-limiting step for the removal of fluoroquinolones, which had the highest levels in sludge. Geobacter and Thermincola were dominant bacteria in the anode biofilms of mesophilic (37 °C) MECs (M-MECs) and T-MECs, respectively.
Collapse
Affiliation(s)
- Weilin Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
15
|
Dattatraya Saratale G, Rajesh Banu J, Nastro RA, Kadier A, Ashokkumar V, Lay CH, Jung JH, Seung Shin H, Ganesh Saratale R, Chandrasekhar K. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2022; 359:127435. [PMID: 35680092 DOI: 10.1016/j.biortech.2022.127435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Rosa Anna Nastro
- Department of Science and Technology, University Parthenope of Naples- Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan
| | - Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, South Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India.
| |
Collapse
|
16
|
Zhou H, Xing D, Ma J, Su Y, Zhang Y. Electrifying anaerobic granular sludge for enhanced waste anaerobic digestion and biogas production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|