1
|
Qian C, He S, Li X, Wu S, Wang D, Yang C. Effects of salinity on anaerobic digestion: Performance, microbial physiology, and community dynamics. BIORESOURCE TECHNOLOGY 2025; 431:132619. [PMID: 40328355 DOI: 10.1016/j.biortech.2025.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Anaerobic digestion (AD) is widely applied to treatment and energy recovery from organic wastewater/wastes, while the efficiency of AD can be limited by salinity stress. This paper reviews the effects of salinity on AD. First of all, the effects of salinity on AD performance were compared, revealing that methane production is more susceptible to salinity stress. Secondly, the influence of salinity on microbial physiology and intracellular molecules was examined, demonstrating that salinity stress reduces the activity of key enzymes and increases the concentration of extracellular polymeric substances during AD. Thirdly, variations in microbial community structure under salinity stress were discussed, with archaeal communities showing more significant restructuring, including reduced dominance of acetoclastic methanogens. At last, strategies to mitigate salinity inhibition were presented, along with prospects for future research directions. This review provides theoretical guidance for engineering applications and strategies for enhancing AD in treating saline substrates.
Collapse
Affiliation(s)
- Chongxin Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Li X, Yan YJ, Wu HM, Ibrahim Gadow S, Jiang H, Kong Z, Hu Y. Enhancing mesophilic methanogenesis in oleate-rich environments through optimized micro-aeration pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:171-179. [PMID: 39662327 DOI: 10.1016/j.wasman.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Micro-aeration pretreatment has emerged as a promising technology for improving the performance of anaerobic bioreactors in the treatment of lipid-rich organic waste, particularly in mitigating the accumulation of long-chain fatty acids (LCFAs). Micro-aeration intensity is a critical factor in optimizing substrate hydrolysis and methanogenesis efficiency. In this study, optimal micro-aeration intensities for acetoclastic (30 mL-air/g-COD) and overall methanogenesis (7.5 mL-air/g-COD) were initially determined using acetate and glucose as substrates, respectively. Subsequently, the addition of 0.5 mM oleate (a typical LCFA) increased cumulative methane production by 22.1 % when acetate was used as the substrate after 30 mL-air/g-COD micro-aeration pretreatment. Conversely, it decreased cumulative methane production by 17.3 % when glucose was used as the substrate after 7.5 mL-air/g-COD micro-aeration pretreatment. Additionally, the population of facultative hydrolysis microorganisms, such as the genus Pseudomonas, increased by 25.7 % and 27.8 % when acetate and glucose were used as substrates, respectively. Furthermore, the predominant methane-producing archaea, including the genus Methanosarcina, increased by 27.3 % when acetate was used as the substrate, while the genus Methanosaeta decreased by 65.3 % when glucose was used as the substrate. Collectively, these findings provide insights into the methanogenesis pathway under optimal micro-aeration pretreatment conditions, guiding future research in this field.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Juan Yan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Ming Wu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Samir Ibrahim Gadow
- Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki 12622, Cairo, Egypt
| | - Hongyu Jiang
- Beijing Enterprises Water (China) Investment Co., Ltd, BEWG Building, District 7, Wangjing East Park, Chaoyang District, Beijing 100015, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Chun J, Kim SM, Ko G, Shin HJ, Kim M, Cho HU. Thermophilic aerobic digestion using aquaculture sludge from rainbow trout aquaculture facilities: effect of salinity. Front Microbiol 2024; 15:1488041. [PMID: 39569003 PMCID: PMC11576446 DOI: 10.3389/fmicb.2024.1488041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
The objectives of this study were to evaluate the potential of using thermophilic aerobic digestion (TAD) to hydrolyze aquaculture sludge, and to investigate the hydrolysis efficiency and changes in microbial community structure during TAD at 0, 15, and 30 practical salinity units (psu). As digestion progressed, soluble organic matter concentrations in all reactors increased to their maximum values at 6 h. The hydrolysis efficiency at 6 h decreased as salinity increased: 2.42% at 0 psu, 1.78% at 15 psu, and 1.04% at 30 psu. The microbial community compositions at the genus level prominently differed in the relative abundances of dominant bacteria between 0 psu and 30 psu. The relative abundance of genera Iodidimonas and Tepidiphilus increased significantly as salinity increased. Increase in the salinity at which thermophilic aerobic digestion of aquaculture sludge was conducted altered the microbial community structure, which in turn decreased the efficiency of organic matter hydrolysis.
Collapse
Affiliation(s)
- Jihyun Chun
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Su Min Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Gwangil Ko
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Hyo Jeong Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Minjae Kim
- Civil Engineering, University of Kentucky, Lexington, KY, United States
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| |
Collapse
|
4
|
Wang X, Zhang J, Xie Y, Li X, Ran J, Zhang M, Zhang L, Zhang A. The effect of Fenton sludge on anaerobic digestion of papermaking wastewater in an upflow anaerobic sludge blanket reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122762. [PMID: 39366241 DOI: 10.1016/j.jenvman.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
An upflow anaerobic sludge blanket (UASB) reactor was used to investigate the effect of adding Fenton sludge (FS) on the anaerobic digestion of actual papermaking wastewater. The results showed that a one-time addition of 10 g/L FS could sustainably promote the performance of UASB for more than 40 days. The organic matter removal efficiency increased by 15.56%, and the biogas production increased by 24.52%. The proportion of methane in biogas increased by 12.87%. Adding FS increased the capacitance values of sludge extracellular polymeric substances and the electron transfer system activity in reactor increased by 1.76 times. The dehydrogenase activity and coenzyme F420 of the sludge increased by 1.54 and 2.11 times, respectively. Adding FS enriched the iron-reducing bacteria (Thermodesulfobacteriota) and hydrolytic acid-producing bacteria (Chloroflexota and Synergistota), thereby promoting the hydrolysis and acidification process. Adding FS was beneficial to the enrichment of methanogen, especially Methanosaeta, significantly increasing the methane production.
Collapse
Affiliation(s)
- Xianbao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province, 710021, China.
| | - Jialu Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Yili Xie
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Xiang Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Jiarong Ran
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Minting Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province, 710021, China
| | - Anlong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province, 710021, China
| |
Collapse
|
5
|
Li B, Guo H, Chen Z, Xu Q, Xia D, Lv J, Yu H. Metabolism mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174085. [PMID: 38908596 DOI: 10.1016/j.scitotenv.2024.174085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Coalbed methane (CBM) presents a promising energy source for addressing global energy shortages. Nonetheless, challenges such as low gas production from individual wells and difficulties in breaking gels at low temperatures during extraction hinder its efficient utilization. Addressing this, we explored native microorganisms within coal seams to degrade guar gum, thereby enhancing CBM production. However, the underlying mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum remain unclear. Research results showed that the combined effect of lignite and guar gum enhanced the production, yield rate and concentration of biomethane. When the added guar gum content was 0.8 % (w/w), methane production of lignite and guar gum reached its maximum at 561.9 mL, which was 11.8 times that of single lignite (47.3 mL). Additionally, guar gum addition provided aromatic and tryptophan proteins and promoted the effective utilization of CC/CH and OCO groups on the coal surface. Moreover, the cooperation of lignite and guar gum accelerated the transformation of volatile fatty acids into methane and mitigated volatile fatty acid inhibition. Dominant bacteria such as Sphaerochaeta, Macellibacteroides and Petrimonas improved the efficiency of hydrolysis and acidification. Electroactive microorganisms such as Sphaerochaeta and Methanobacterium have been selectively enriched, enabling the establishment of direct interspecies electron transfer pathways. This study offers valuable insights for increasing the production of biogenic CBM and advancing the engineering application of microbial degradation of guar gum fracturing fluid. Future research will focus on exploring the methanogenic capabilities of lignite and guar gum in in-situ environments, as well as elucidating the specific metabolic pathways involved in their co-degradation.
Collapse
Affiliation(s)
- Bing Li
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China.
| | - Zhenhong Chen
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
| | - Qiang Xu
- General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039,China
| | - Daping Xia
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jinghui Lv
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hongfei Yu
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
6
|
Garcia-Tirado R, Fernandez-Crespo E, Font X, Vicent T, Peralta J, Trifi D, Martinez-Cuenca R, Chiva S. Long-term performance and activity study of a two-stage anaerobic EGSB reactors system treating complex and toxic industrial wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11109. [PMID: 39223833 DOI: 10.1002/wer.11109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Anaerobic treatment of industrial wastewater using upflow anaerobic reactors is an extended trend due to its high efficiency and biogas production potential, but its implementation in some sectors is limited due to the complexity and toxicity of the wastewaters. In this study, a two-stage expanded granular sludge bed (EGSB) reactors system has been investigated at both bench and pilot scale for the treatment of complex and toxic real wastewater from a petrochemical industry. The effect of different operational parameters including organic loading rate (OLR), hydraulic retention time (HRT) and influent characteristics over COD removal and biogas production and composition have been studied. Additionally, biomass specific methanogenic activity (SMA) and wastewater toxicity have been evaluated after long-term operation. Optimum total HRT of 24 h has been determined resulting in total COD and SO4 2- removal of 56.30 ± 5.25% and 31.68 ± 14.71%, respectively, at pilot scale, and average biogas production of 93.47 ± 34.92 NL/day with 67.01 ± 10.23 %CH4 content and 5210.11 ± 6802.27 ppmv of H2S. SMA and toxicity tests have confirmed inhibitory and toxic effects of wastewater over anaerobic biomass with average maximum inhibition of 65.34% in the unacclimated anaerobic inoculum while chronic toxicity produced a decrease of an order of magnitude in SMA after 600 days of operation. This study demonstrates the feasibility of applying an anaerobic treatment to this wastewater using EGSB reactors between a 0.97-1.74 gCOD/L/day OLR range. Nonetheless, periodic reinoculation would be necessary for long-term operation due to chronic toxicity of the wastewater exerted on the anaerobic biomass. PRACTITIONER POINTS: A two-stage EGSB reactors system has been operated at bench and pilot scale to treat complex and toxic petrochemical wastewater. Optimal total HRT of 24 h resulted in average COD removal ranging from 40% to 60%. SMA and toxicity tests have been performed to study long-term acclimation, detecting an activity depletion of an order of magnitude.
Collapse
Affiliation(s)
- Ruben Garcia-Tirado
- Department of Mechanical Engineering and Construction, Jaume I University, Castellón de la Plana, Spain
| | - Emma Fernandez-Crespo
- Department of Mechanical Engineering and Construction, Jaume I University, Castellón de la Plana, Spain
| | - Xavier Font
- Department of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Barcelona, Spain
| | - Teresa Vicent
- Department of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Barcelona, Spain
| | - Juan Peralta
- Fomento Agrícola Castellonense S.A. (FACSA), Castellón de la Plana, Spain
| | - Delia Trifi
- Department of Mechanical Engineering and Construction, Jaume I University, Castellón de la Plana, Spain
| | - Raul Martinez-Cuenca
- Department of Mechanical Engineering and Construction, Jaume I University, Castellón de la Plana, Spain
| | - Sergio Chiva
- Department of Mechanical Engineering and Construction, Jaume I University, Castellón de la Plana, Spain
| |
Collapse
|
7
|
Li B, Guo H, Deng Z, Chen L, Ji C, Xu X, Zhang Y, Cheng S, Wang Z. Investigating functional mechanisms in the Co-biodegradation of lignite and guar gum under the influence of salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121860. [PMID: 39025008 DOI: 10.1016/j.jenvman.2024.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The biodegradation of guar gum by microorganisms sourced from coalbeds can result in low-temperature gel breaking, thereby reducing reservoir damage. However, limited attention has been given to the influence of salinity on the synergistic biodegradation of coal and guar gum. In this study, biodegradation experiments of guar gum and lignite were conducted under varying salinity conditions. The primary objective was to investigate the controlling effects and mechanisms of salinity on the synergistic biodegradation of lignite and guar gum. The findings revealed that salinity had an inhibitory effect on the biomethane production from the co-degradation of lignite and guar gum. The biomethane production declined with increasing salinity levels, decreasing from 120.9 mL to 47.3 mL. Even under 20 g/L salt stress conditions, bacteria in coalbeds could effectively break the gel and the viscosity decreased to levels below 5 mPa s. As salinity increased, the removal rate of soluble chemical oxygen demand (SCOD) decreased from 55.63% to 31.17%, and volatile fatty acids (VFAs) accumulated in the digestion system. High salt environment reduces the intensity of each fluorescence peak. Alterations in salinity led to changes in microbial community structure and diversity. Under salt stress, there was an increased relative abundance of Proteiniphilum and Methanobacterium, ensuring the continuity of anaerobic digestion. Hydrogentrophic methanogens exhibited higher salt tolerance compared to acetoclastic methanogens. These findings provide experimental evidence supporting the use of guar gum fracturing fluid in coalbeds with varying salinity levels.
Collapse
Affiliation(s)
- Bing Li
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000, China.
| | - Ze Deng
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China.
| | - Linyong Chen
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng, 048012, China.
| | - Changjiang Ji
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng, 048012, China.
| | - Xiaokai Xu
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yawei Zhang
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Song Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Zhenzhi Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
8
|
Li X, Zhang Y, Wang Y, Zhu L, Liu Y, Wang L. AgIn 5S 8/g-C 3N 4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater. Molecules 2024; 29:2862. [PMID: 38930926 PMCID: PMC11206768 DOI: 10.3390/molecules29122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The effective treatment and recovery of fracturing wastewater has always been one of the difficult problems to be solved in oilfield wastewater treatment. Accordingly, in this paper, photocatalytic-coupled low-temperature plasma technology was used to degrade the simulated wastewater containing hydroxypropyl guar, the main component of fracturing fluid. Results indicated that hydroxypropyl-guar wastewater could be degraded to a certain extent by either photocatalytic technology or plasma technology; the chemical oxygen demand and viscosity of the treated wastewater under two single-technique optimal conditions were 781 mg·L-1, 0.79 mPa·s-1 and 1296 mg·L-1, 1.01 mPa·s-1, respectively. Furthermore, the effective coupling of AgIn5S8/gC3N4 photocatalysis and dielectric-barrier discharge-low-temperature plasma not only enhanced the degradation degree of hydroxypropyl guar but also improved its degradation efficiency. Under the optimal conditions of coupling treatment, the hydroxypropyl-guar wastewater achieved the effect of a single treatment within 6 min, and the chemical oxygen demand and viscosity of the treated wastewater reduced to below 490 mg·L-1 and 0.65 mPa·s-1, respectively. In the process of coupled treatment, the AgIn5S8/gC3N4 could directly absorb the light and strong electric field generated by the system discharge and play an important role in the photocatalytic degradation, thus effectively improving the energy utilization rate of the discharge system and enhancing the degradation efficiency of hydroxypropyl guar.
Collapse
Affiliation(s)
- Xiang Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.Z.); (Y.W.); (L.Z.); (Y.L.); (L.W.)
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yuhang Zhang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.Z.); (Y.W.); (L.Z.); (Y.L.); (L.W.)
| | - Yiling Wang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.Z.); (Y.W.); (L.Z.); (Y.L.); (L.W.)
| | - Li Zhu
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.Z.); (Y.W.); (L.Z.); (Y.L.); (L.W.)
| | - Yuhang Liu
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.Z.); (Y.W.); (L.Z.); (Y.L.); (L.W.)
| | - Lingxing Wang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.Z.); (Y.W.); (L.Z.); (Y.L.); (L.W.)
| |
Collapse
|
9
|
Jiang Y, Ma D, Wang J, Xu Q, Fang J, Yue Z. Regulatory of salinity on assembly of activated sludge microbial communities and nitrogen transformation potential in industrial plants of the lower Yangtze River basin. ENVIRONMENTAL RESEARCH 2024; 251:118769. [PMID: 38518918 DOI: 10.1016/j.envres.2024.118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This study aims to thoroughly investigate the impact mode of salinity carried by industrial wastewater on the anaerobic-anoxic-oxic (A2O) sludge in wastewater treatment plants (WWTPs). Through comprehensive investigation of the A2O stage activated sludge (AS) from 19 industrial WWTPs in the downstream area of the Yangtze River, China, A total of 38 samples of anaerobic sludge and oxic sludge were collected and analyzed. We found that salinity stress significantly inhibits the growth of the AS community, particularly evident in the anaerobic sludge community. Furthermore, the high-saline environment induces changes in the structure and functional patterns of the AS community, leading to intensive interactions and resource exchanges among microorganisms. Halophilic microorganisms may play a crucial role in this process, significantly impacting the overall community structure, especially in the oxic sludge community. Additionally, salinity stress not only suppresses the nitrogen transformation potential of the AS but also leads to the accumulation of nitrite, thereby increasing the emission potential of both NO and N2O, exacerbating the greenhouse effect of the A2O process in industrial WWTPs. The findings of this study provide necessary theoretical support for maintaining the long-term stable operation of the A2O sludge system in industrial WWTPs, reducing carbon footprint, and improving nitrogen removal efficiency.
Collapse
Affiliation(s)
- Yifan Jiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jintao Fang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
10
|
Zhang X, Huang T, Wu D. Enhanced anaerobic digestion of human feces by ferrous hydroxyl complex (FHC): Stress factors alleviation and microbial resistance improvement. CHEMOSPHERE 2024; 350:141041. [PMID: 38151064 DOI: 10.1016/j.chemosphere.2023.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Anaerobic digestion (AD) offers a reliable strategy for resource recovery from source-separated human feces (HF), but is limited by a disproportionate carbon/nitrogen (C/N) ratio. Ferrous hydroxyl complex (FHC) was first introduced into the HF-AD system to mediate methanogenesis. Mono-digestion of undiluted HF was inhibited by high levels of volatile fatty acids (VFAs), ammonia, and hydrogen sulfide (H2S). FHC addition at optimum dosage (500-1000 mg/L) increased the cumulative methane (CH4) yield by 22.7%, enhanced the peak value of daily CH4 production by 60.5%, and shortened the lag phase by 24.7%. H2S concentration in biogas was also greatly decreased by FHC via precipitation. FHC mainly facilitated the hydrolysis, acidification, and methanogenesis processes. The production and transformation of VFAs were optimized in the presence of FHC, thus relieving acid stress. FHC elevated the activities of alkaline protease, cellulase, and acetate kinase by 32.3%, 18.2%, and 30.3%, respectively. Microbial analysis revealed that hydrogenotrophic methanogens prevailed in mono-digestion at high HF loading but were weakened after FHC addition. FHC also enriched Methanosarcina, thereby expanding the methanogenesis pathway and improving the resistance to ammonia stress. This work would contribute to improving the methanogenic performance and resource utilization for HF anaerobic digestion.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Tao Huang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
11
|
Wang E, Sun H, Chen P, Zheng Y, Guo J, Dong R. Two-step anaerobic digestion of rice straw with nanobubble water. BIORESOURCE TECHNOLOGY 2023; 376:128928. [PMID: 36940882 DOI: 10.1016/j.biortech.2023.128928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Lignocellulose usually requires pretreatment to improve biogas production. To enhance lignocellulose biodegradability and improve anaerobic digestion (AD) efficiency, different types (N2, CO2, and O2) of nanobubble water (NW) were applied in this study as soaking agent and AD accelerant to increase the biogas yield of rice straw. The results showed that the cumulative methane yields of treating with NW in two-step AD increased by 11.0%-21.4% compared with untreated straw. The maximum cumulative methane yield was 313.9±1.7 mL/gVS in straw treated with CO2-NW as soaking agent and AD accelerant (PCO2-MCO2). The application of CO2-NW and O2-NW as AD accelerants increased bacterial diversity and relative abundance of Methanosaeta. This study suggested that using NW could enhance soaking pretreatment and methane production of rice straw in two-step AD; however, combined treatment with inoculum and NW or microbubble water in the pretreatment needs to compare in future.
Collapse
Affiliation(s)
- Enzhen Wang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Penghui Chen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
12
|
Duc LV, Nagao S, Mojarrad M, Miyagawa Y, Li ZY, Inoue D, Tajima T, Ike M. Bioaugmentation with marine sediment-derived microbial consortia in mesophilic anaerobic digestion for enhancing methane production under ammonium or salinity stress. BIORESOURCE TECHNOLOGY 2023; 376:128853. [PMID: 36898569 DOI: 10.1016/j.biortech.2023.128853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shintaro Nagao
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mohammad Mojarrad
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuta Miyagawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Zi-Yan Li
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahisa Tajima
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Performance and Bacterial Characteristics of Aerobic Granular Sludge in Treatment of Ultra-Hypersaline Mustard Tuber Wastewater. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Mustard tuber wastewater (MTW) is an ultra-hypersaline high-strength acid organic wastewater. Aerobic granular sludge (AGS) has been demonstrated to have high tolerance to high organic loading rate (OLR), high salinity, and broad pH ranges. However, most studies were conducted under single stress, and the performance of AGS under multiple stresses (high salinity, high OLR, and low pH) was still unclear. Herein, mature AGS was used to try to treat the real MTW at 9% salinity, pH of 4.1–6.7, and OLR of 1.8–7.2 kg COD/m3·d. The OLR was increased, and the results showed that the upper OLR boundary of AGS was 5.4 kg COD/m3·d (pH of 4.2) with relatively compact structure and high removal of TOC (~93.1%), NH4+-N (~88.2%), and TP (~50.6%). Under 7.2 kg COD/m3·d (pH of 4.1), most of the AGS was fragmented, primarily due to the multiple stresses. 16S rRNA sequencing indicated that Halomonas dominated the reactor during the whole process with the presence of unclassified-f-Flavobacteriaceae, Aequorivita, Paracoccus, Bradymonas, and Cryomorpha, which played key roles in the removal of TOC, nitrogen, and phosphorus. This study investigated the performance of AGS under multiple stresses, and also brought a new route for highly-efficient simultaneous nitrification–denitrifying phosphorus removal of real MTW.
Collapse
|
14
|
Liu Z, Zhang D, Ning F, Zhang S, Hou Y, Gao M, Wang J, Zhang A, Liu Y. Resistance and adaptation of mature algal-bacterial granular sludge under salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160558. [PMID: 36574543 DOI: 10.1016/j.scitotenv.2022.160558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The study investigated the response characteristics of algal-bacterial granular sludge (ABGS) under salinity stress (0 % → 2 %). At 1 % salinity, the sludge performance was inhibited, while recovered rapidly, indicating the ABGS exhibited resistance. However, at 2 % salinity, the suppressed performances did not recover until the stress was eliminated. Under salinity stress, the nutrient removal capacity of the system and the composition and chemical characteristics of extracellular polymers substances also changed. Meanwhile, the ABGS formed adaptation to salinity stress in the early coping process. As a result, the effect of the second 2 % salinity on ABGS was significantly weakened. High-throughput sequencing results showed that the microbial community in ABGS shifted under salinity stress, and the halophilic bacteria genera Arcobacter, Denitromonas, Azoarcus, etc. were enriched, which might be the genetic basis of the adaptation.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin 719000, China.
| | - Dan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Fangzhi Ning
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Jin Hua Nan Road, No. 19, Xi'an 710048, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 11 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
15
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Chen B, Qaisar M, Xiao J, Li W, Li J, Cai J. Combined acute effect of salinity and substrate concentration on simultaneous sulfide and nitrite removal process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127978. [PMID: 36126846 DOI: 10.1016/j.biortech.2022.127978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The threshold salt concentration to inhibit the anaerobic digestion (AD) has been intensively investigated, but its insight mechanism is not fully revealed. Therefore, this study systematically investigated the effect of salinity on acidogenesis and methanogenesis and its mechanism. Results showed that low salinity level (i.e. 0.6%) had stimulatory effect on volatile fatty acids (VFA) and methane production, while significant inhibition was observed with further increased salinity. Moreover, high salinity limited the butyric acid degradation at acidogenesis process. The decreases of enzymes (AK and PTA) activity and functional genes (ackA, pta and ACOX) expression that related to β-oxidation explained the butyric acid accumulation at high salinity levels. Microbial community analysis revealed high salinity levels significantly inhibited the proliferation of Syntrophomonas sp., which are known to be associated with butyric acid degradation. Similarly, the relative abundance of acetoclastic methanogen (Methanothrix sp.) and methylotrophic methanogen (Methanolinea sp.) significantly decreased at salinity condition.
Collapse
Affiliation(s)
- Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianqi Yin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|