1
|
Salvador R, Eriksen ML, Kjaersgaard NC, Hedegaard M, Knudby T, Lund V, Larsen SB. From ocean to meadow: A circular bioeconomy by transforming seaweed, seagrass, grass, and straw waste into high-value products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114753. [PMID: 40121888 DOI: 10.1016/j.wasman.2025.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Biomass waste, both aquatic (seagrass and seaweed) and terrestrial (grass and straw), represents a valuable resource with potential for high-value product creation. This paper reveals the potential across pharmaceuticals, food and feed, chemicals, performance materials, and energy. Notably, chemicals and performance materials offer the greatest value creation potential for both biomass types. Although aquatic and terrestrial biomasses can be used for similar final products, their journey from-waste-to-product differ, facing different facets of barriers such as low local technology readiness and high investment and operational costs. Conversely, the main enablers of this value recovery include increased sustainability and low feedstock costs. Here we also reflect that the value of biomass needs to be rethought, going beyond economic benefits.
Collapse
Affiliation(s)
- Rodrigo Salvador
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| | - M Lynn Eriksen
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| | - Niels C Kjaersgaard
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| | - Michael Hedegaard
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| | - Torben Knudby
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| | - Victor Lund
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| | - Samuel B Larsen
- Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Ballerup Campus, DK-2750 Ballerup, Denmark.
| |
Collapse
|
2
|
Song Q, Kong F, Liu BF, Song X, Ren HY. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100420. [PMID: 38765891 PMCID: PMC11099330 DOI: 10.1016/j.ese.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Folino A, Gentili E, Komilis D, Calabrò PS. Biogas recovery from a state-of-the-art Italian landfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122040. [PMID: 39094408 DOI: 10.1016/j.jenvman.2024.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The Fossetto landfill has operated in the municipality of Monsummano Terme (Tuscany, Italy) since 1988, being considered a state-of-the-art landfill for 35 years. Initially, Fossetto acted as a conventional sanitary landfill for mixed municipal solid waste. With changes in regulations and technology, the Fossetto landfill was gradually equipped with a biogas recovery and valorisation system, a mechanical-biological treatment (MBT) plant in 2003 and a reverse osmosis leachate treatment plant, so the concentrated leachate has been recirculated back into the landfill body since 2006. Long-term biogas monitoring, enables the calculation of the efficiency of biogas recovery using a rather simplified methodology, which was assessed as being approximately 40% over the prior ten-years period. This value was lower than expected, confirming the results of previous studies and indicating the need of attributes. Applying the USEPA LandGEM model showed that the adoption of MBT substantially reduced biogas generation yields and rates by up to approximately 90% which was facilitated by the adoption of landfill leachate recirculation transforming the conventional landfill into a bioreactor. Detailed fugitive emission monitoring has allowed the evaluation of the impact of the cover type (final or temporary) and the emissions hotspots. From these results, possible remedial actions have been suggested including the more frequent monitoring of the fugitive emissions using simple and cost-effective methods (e.g., UAVs). Approximately 50% of fugitive emissions can be attributed to emissions hotspots, which reduce biogas recovery and the efficiency of temporary covers.
Collapse
Affiliation(s)
- Adele Folino
- Department of Civil, Energy, Environmental and Materials Engineering, Università Mediterranea di Reggio Calabria, Via Zehender - loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Emiliano Gentili
- CMSA Cooperativa Muratori Sterratori e Affini, Via L. Ariosto 3, 51016, Montecatini Terme, PT, Italy
| | - Dimitrios Komilis
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Paolo S Calabrò
- Department of Civil, Energy, Environmental and Materials Engineering, Università Mediterranea di Reggio Calabria, Via Zehender - loc. Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
4
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
5
|
Casado M, Sanz C, Cáceres R, Rufat J, Vallverdú X, Casadesús J, Matamoros V, Piña B. Evolution of microbiome composition, antibiotic resistance gene loads, and nitrification during the on-farm composting of the solid fraction of pig slurry using two bulking agents. ENVIRONMENTAL RESEARCH 2024; 245:117944. [PMID: 38109952 DOI: 10.1016/j.envres.2023.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Composting is a nature-based method used to stabilize organic matter and to transform nitrogen from animal farm manure or solid fraction of slurry (SFS). The use of composted material as source of nutrients for agriculture is limited by its potential to facilitate the propagation of biological hazards like pathogens and antibiotic-resistant bacteria and their associated antibiotic-resistance genes (ARG). We show here an experimental on-farm composting (one single batch) of pig SFS, performed under realistic conditions (under dry continental Mediterranean climate) for 280 days, and using two different bulking agents (maize straw and tree pruning residues) for the initial mixtures. The observed reduction in potentially pathogenic bacteria (80-90%) and of ARG loads (60-100%) appeared to be linked to variations in the microbiome composition occurring during the first 4 months of composting, and concurrent with the reduction of water-soluble ammonium and organic matter loads. Nitrification during the composting has also been observed for both composting piles. Similar patterns have been demonstrated at small scale and the present study stresses the fact that the removal can also occur at full scale. The results suggest that adequate composition of the starting material may accelerate the composting process and improve its global performance. While the results confirm the sanitization potential of composting, they also issue a warning to limit ARG loads in soils and in animal and human gut microbiomes, as the only way to limit their presence in foodstuffs and, therefore, to reduce consumers' exposure.
Collapse
Affiliation(s)
- Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Rafaela Cáceres
- IRTA. Torre Marimon, 08140, Caldes de Montbui, Catalunya, Spain.
| | - Josep Rufat
- IRTA. Fruit Centre, Building of the Parc Gardeny, 25003, Lleida, Catalunya, Spain
| | - Xavier Vallverdú
- IRTA. Fruit Centre, Building of the Parc Gardeny, 25003, Lleida, Catalunya, Spain
| | - Jaume Casadesús
- IRTA. Fruit Centre, Building of the Parc Gardeny, 25003, Lleida, Catalunya, Spain
| | - Víctor Matamoros
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| |
Collapse
|
6
|
Lin X, Al-Dhabi NA, Li F, Wang N, Peng H, Chen A, Wu G, Zhang J, Zhang L, Huang H, Yan B, Luo L, Tang W. Relative contribution of ammonia-oxidizing bacteria and denitrifying fungi to N 2O production during rice straw composting with biochar and biogas residue amendments. BIORESOURCE TECHNOLOGY 2023; 390:129891. [PMID: 37863336 DOI: 10.1016/j.biortech.2023.129891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Nitrous oxide (N2O) production is associated with ammonia-oxidizing bacteria (amoA-AOB) and denitrifying fungi (nirK-fungi) during the incorporation of biochar and biogas residue composting. This research examined the relative contribution of alterations in the abundance, diversity and structure of amoA-AOB and nirK-fungi communities on N2O emission by real-time PCR and sequence processing. Results showed that N2O emissions showed an extreme relation with the abundance of amoA-AOB (rs = 0.584) while giving credit to nirK-fungi (rs = 0.500). Nitrosomonas and Nitrosospira emerged as the dominant genera driving ammoxidation process. Biogas residue changed the community structure of AOB by altering Nitrosomonadaceae proportion and physiological capacity. The denitrification process, primarily governed by nirK-fungi, served as a crucial pathway for N2O production, unveiling the pivotal mechanism of biochar to suppress N2O emissions. C/N and NH4+-N were identified as significant parameters influencing the distribution of nirK-fungi, especially Micromonospora, Halomonas and Mesorhizobium.
Collapse
Affiliation(s)
- Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fanghong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China.
| | - Lihua Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Hongli Huang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
8
|
Sunkar S, Prakash P, Dhandapani B, Baigenzhenov O, Kumar JA, Nachiyaar V, Zolfaghari S, Sara, Tejaswini, Hosseini-Bandegharaei A. Adsorptive removal of acid blue dye 113 using three agricultural waste biomasses: The possibility of valorization by activation and carbonization - A comparative analysis. ENVIRONMENTAL RESEARCH 2023; 233:116486. [PMID: 37369306 DOI: 10.1016/j.envres.2023.116486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
The presence of various organic and inorganic contaminants in wastewater leads to serious health effects on humans and ecosystems. Industrial effluents have been considered as noticeable sources of contaminating water streams. These effluents directly liberate the pollutants such as dye molecules and heavy metal ions into the environment. In the present study, three biowaste materials (groundnut shell powder, coconut coir powder and activated corn leaf carbon) were utilized and compared for the removal of acid blue dye 113 from aqueous solutions. The characterization study of newly prepared sorbent material (H3PO4-activated corn leaf carbon) and the other utilized sorbents was carried out by Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrophotometer (FTIR), along with Energy Dispersive X-Ray (EDX) Analysis. The influence of experimental conditions such as pH, initial dye concentration, temperature, contact time, and sorbent dosage on the removal efficiency of the dye were appraised. The adsorption isotherm and kinetic result of acid blue dye 113 adsorption onto the sorbents best obeyed from Sips and pseudo-second-order kinetic model. Overall, the outcomes confirmed that the newly synthesized sorbent material (carbonized H3PO4-activated corn leaf) has superior adsorption capacity, rapid adsorption, and higher suitability for the removal of toxic dyes from the contaminated waters.
Collapse
Affiliation(s)
- Swetha Sunkar
- Department of Bioinformatics, School of Bio & Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - P Prakash
- Department of Biotechnology, School of Bio & Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Balaji Dhandapani
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, India
| | | | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India.
| | - Valli Nachiyaar
- Department of Biotechnology, School of Bio & Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | | | - Sara
- Department of Biotechnology, School of Bio & Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Tejaswini
- Department of Biotechnology, School of Bio & Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | | |
Collapse
|
9
|
Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. ENVIRONMENTAL RESEARCH 2023; 224:115529. [PMID: 36822534 DOI: 10.1016/j.envres.2023.115529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.
Collapse
Affiliation(s)
- Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Shrirang Maddalwar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Debishree Khan
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| |
Collapse
|