1
|
Solomonova ES, Shoman NY, Akimov AI. Applicability of Cyclotella caspia and Thalassiosira weissflogii diatomous water growth for the removal of the antibiotic tetracycline. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01255-7. [PMID: 40087264 DOI: 10.1007/s12223-025-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
The effect of the antibiotic tetracycline on the growth and photosynthetic activity of the diatoms Cyclotella caspia Grunow, 1878, and Thalassiosira weissflogii (Grunow) G.A. Fryxell & Hasle, 1977, has been studied. The rate of tetracycline concentration decreases in the medium with and without has been estimated. The expediency and prospects of using diatoms as promising objects for water purification from tetracycline are shown. It was found that the rate and efficiency of tetracycline removal from the medium in the presence of algae depends on the initial content of the pollutant in the medium. The maximum efficiency of antibiotic removal is observed at concentrations of the pollutant provoking the hormesis growth of algae at 5 mg/L in C. caspia and 10 mg/L in T. weissflogii. In samples with C. caspia and tetracycline, the residual antibiotic content in the medium was 10-14% lower than in samples without algae. In the experiment with T. weissflogii, this indicator reached 15-16%. At concentrations of the pollutant, 2 and 10 mg/L in C. caspia and 2 and 5 mg/L in T. weissflogii, the effectiveness of removing the antibiotic by algae was lower. The residual content of tetracycline in the medium was on average 8-11% lower than in samples without algae. At antibiotic concentrations of 15 and 20 mg/L, the rate of its removal in samples with and without algae did not significantly differ. This result is obviously due to the toxic effect of tetracycline on cells, leading to pronounced inhibition of algae growth and/or death.
Collapse
Affiliation(s)
- Ekaterina S Solomonova
- Department of Algae Ecological Physiology, A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Ave, Sevastopol, Russian Federation.
| | - Natalia Yu Shoman
- Department of Algae Ecological Physiology, A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Ave, Sevastopol, Russian Federation
| | - Arkady I Akimov
- Department of Algae Ecological Physiology, A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Ave, Sevastopol, Russian Federation
| |
Collapse
|
2
|
Silva C, Figueira E, Matos D, Sá C, Vidal T, Gonçalves FJM, Abrantes N, Pereira JL. Assessment of extracellular polymeric substances production and antioxidant defences in periphytic communities exposed to effluent contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2090-2102. [PMID: 39417561 DOI: 10.1039/d4em00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Periphyton is frequently used in the evaluation of the ecological status of aquatic ecosystems using diatoms as a proxy. However, periphyton has a particularity, the production of extracellular polymeric substances (EPS), which might play a protective role against exposure to harmful environmental contaminants. Effluents originating in wastewater treatment plants (WWTPs) constitute some of the most complex mixtures of contaminants, to which aquatic ecosystems are frequently exposed, often containing tens to hundreds of different chemicals. In such challenging scenarios, a putative protective role of EPS may obscure the bioindicator value of diatoms. To address this problem, we sampled periphyton upstream and downstream of the effluent outfall from three different WWTPs, quantifying EPS production and simultaneously evaluating general stress responses in the community (protein and sugar content, photosynthetic pigments, antioxidant enzyme activity and oxidative damage). By combining these endpoints with a characterization of the sediments of the riverine systems receiving the effluents made in a previous study (metals, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products), we aimed to elucidate whether effluent contaminants trigger negative effects, which may be mitigated by EPS layers protecting the communities. Our results indicated that under a comparatively milder contamination burden, EPS production is enhanced in samples collected downstream of the effluent outfall; under a higher contamination burden, EPS production is hampered. Stress-coping mechanisms were activated by environmental contaminants, including the antioxidant defense, particularly through catalase and superoxide dismutase activity. The findings support the generally assumed protective effect of EPS, but also suggest that EPS production depends on the contamination burden and that protective effects should be in place under specific scenarios of, for example, relatively low contamination levels. Overall, the integrative approach used in this study contributes to a better understanding of the complex interplay of interactions between effluent-driven contamination and thriving periphytic communities inhabiting recipient waterways, including evolved protection mechanisms.
Collapse
Affiliation(s)
- Carlos Silva
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Etelvina Figueira
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Diana Matos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Carina Sá
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Tânia Vidal
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | | | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| |
Collapse
|
3
|
Singh PK, Marella TK, Bhattacharjya R, Tyagi R, Plaha NS, Kaushik N, Tiwari A. Marine diatom algae cultivation in simulated dairy wastewater and biomass valorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57466-57477. [PMID: 38175515 DOI: 10.1007/s11356-023-31531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Liquid byproducts and organic wastes generated from dairy processing units contribute as the largest source of industrial food wastewater. Though bacteria-mediated treatment strategies are largely implemented, a more effective and innovative management system is needed of the hour. Thus, the current study involves the cultivation of centric diatoms, Chaetoceros gracilis, and Thalassiosira weissflogii in simulated dairy wastewater (SDWW) formulated using varying amounts of milk powder with artificial seawater f/2 media (ASW). The results revealed that cell density and biomass productivity were highest in the 2.5% SDWW treatment cultures of both the strains, the maximum being in C. gracilis (7.5 × 106 cells mL - 1; 21.1 mg L-1 day-1). Conversely, the total carotenoid, chrysolaminarin, and phenol content were negatively impacted by SDWW. However, a considerable enhancement in the total lipid content was reported in the 2.5% SDWW culture of both species. Furthermore, the fatty acid profiling revealed that though the total polyunsaturated fatty acid (PUFA) content was highest in the control setups, the total mono polyunsaturated fatty acid (MUFA) content was higher in the 5% SDWW setups (30.66% in C. gracilis and 33.21% in T. weissflogii). In addition to it, in the cultures utilizing energy from external carbon sources provided by SDWW, the biodiesel produced was also enhanced owing to the heightened cetane number. Thus, the current study evidently highlights the organic carbon acquisition potential of marine diatoms with the scope of providing sustainable biorefinery.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Thomas Kiran Marella
- Algae Biomass Energy System Development Research Center (ABES), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Navdeep Singh Plaha
- Amity Food and Agriculture Foundation, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
4
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
5
|
Kock A, Glanville HC, Law AC, Stanton T, Carter LJ, Taylor JC. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162939. [PMID: 36934940 DOI: 10.1016/j.scitotenv.2023.162939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals are a ubiquitous group of emerging pollutants of considerable importance due to their biological potency and potential to elicit effects in wildlife and humans. Pharmaceuticals have been quantified in terrestrial, marine, fresh, and transitional waters, as well as the fauna and macro-flora that inhabit them. Pharmaceuticals can enter water ways through different human and veterinary pathways with traditional wastewater treatment, unable to completely remove pharmaceuticals, discharging often unknown quantities to aquatic ecosystems. However, there is a paucity of available information regarding the effects of pharmaceuticals on species at the base of aquatic food webs, especially on phytoplankton, with research typically focussing on fish and aquatic invertebrates. Diatoms are one of the main classes of phytoplankton and are some of the most abundant and important organisms in aquatic systems. As primary producers, diatoms generate ∼40 % of the world's oxygen and are a vital food source for primary consumers. Diatoms can also be used for bioremediation of polluted water bodies but perhaps are best known as bio-indicators for water quality studies. However, this keystone, non-target group is often ignored during ecotoxicological studies to assess the effects of pollutants of concern. Observed effects of pharmaceuticals on diatoms have the potential to be used as an indicator of pharmaceutical-induced impacts on higher trophic level organisms and wider ecosystem effects. The aim of this review is to present a synthesis of research on pharmaceutical exposure to diatoms, considering ecotoxicity, bioremediation and the role of diatoms as bio-indicators. We highlight significant omissions and knowledge gaps which need addressing to realise the potential role of diatoms in future risk assessment approaches and help evaluate the impacts of pharmaceuticals in the aquatic environment at local and global scales.
Collapse
Affiliation(s)
- A Kock
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom 2520, South Africa
| | - H C Glanville
- Geography and Environment, Loughborough University, Loughborough LE11 3TU, UK.
| | - A C Law
- School of Geography, Geology and the Environment, Keele University, Staffordshire ST5 5BG, UK
| | - T Stanton
- Geography and Environment, Loughborough University, Loughborough LE11 3TU, UK
| | - L J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - J C Taylor
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom 2520, South Africa; South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa
| |
Collapse
|
6
|
Singh PK, Bhattacharjya R, Lakshmi NJ, Thakur IS, Tiwari A. Evaluation of the antioxidative response of diatoms grown on emerging steroidal contaminants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:820. [PMID: 37289326 DOI: 10.1007/s10661-023-11336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
With increasing anthropic activities, a myriad of typical contaminants from industries, hospitals, and municipal discharges have been found which fail to be categorized under regulatory standards and are hence considered contaminants of "emerging concern". Since these pollutants are not removed effectively even by the conventional treatment systems, they tend to inflict potential threats to both human and aquatic life. However, microalgae-mediated remediation strategies have recently gained worldwide importance owing to their role in carbon fixation, low operational cost, and production of high-value products. In this study, centric diatom Chaetoceros neogracilis was exposed to different concentrations of estradiol (E2)-induced synthetic media ranging from 0 to 2 mg L-1, and its impact on the antioxidative system of algae was investigated. The results demonstrate that the nutrient stress caused a strong oxidative response elevating the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the 2 mg L-1 E2-treated diatom cultures. However, the specific activity of the H2O2 radical scavenging enzymes like catalase (CAT) was inhibited by the E2 treatment, while that of ascorbate peroxidase (APX) remained comparable to the control (0 mg L-1 of E2). Thus, the study reveals the scope of diatoms as potential indicators of environmental stress even under the varying concentration of a single contaminant (E2).
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - N Jaya Lakshmi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Indu Shekhar Thakur
- Amity School of Earth & Environment Science, Amity University, Haryana, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
7
|
Singh PK, Saxena A, Tyagi R, Sindhu R, Binod P, Tiwari A. Biomass valorization of agriculture wastewater grown freshwater diatom Nitzschia sp. for metabolites, antibacterial activity, and biofertilizer. BIORESOURCE TECHNOLOGY 2023; 377:128976. [PMID: 36990328 DOI: 10.1016/j.biortech.2023.128976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sustainable utilization of agricultural wastewater is a major global challenge. This study evaluated the impact of agricultural fertilizer on the biomass potential of Nitzschia sp. for metabolite production, antibacterial activity, and slow release biofertilizer. Cultivation of Nitzschia sp. in agriculture wastewater (0.5 mg ml-1) exhibited maximum cell density (12×105 cells ml-1), protein content (10.0 mg g-1), and lipid content (14.96%). Carbohydrate and phenol content increases in a dose-dependent manner with 8.27 mg g-1 and 2.05 mg g-1 at a concentration of 2 mg ml-1 respectively. There was a 2.1-fold increment in chrysolaminarin content. Both gram-negative and gram-positive bacteria were susceptible to the antibacterial activity of the biomass. The effects of using diatom biomass as a biofertilizer were evaluated on the growth of periwinkle plants, which showed significant improvements in leaf development, branching at an early stage, flowering, and a marked increase in shoot length. Diatom biorefinery holds immense potential in addressing agriculture wastewater recycling and sustainable generation of high-value compounds.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|