1
|
Chuenchart W, Sawaya C, Surendra KC, Smith AL, Khanal SK. In-situ intermittent micro-aeration in food waste and sewage sludge anaerobic co-digestion: Performance, stability, and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 427:132398. [PMID: 40096868 DOI: 10.1016/j.biortech.2025.132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Anaerobic co-digestion (AcoD) of sewage sludge (SS) with food waste (FW) is a practical approach in urban areas due to spatio-temporal availability of these co-substrates. While micro-aeration could enhance hydrolysis and control acidification during mono-digestion, the effects of micro-aeration on AcoD remains unclear. This study explored the influence of oxidation-reduction potential (ORP)-based in-situ micro-aeration on AcoD performance of SS and FW. Although mono-digestion of FW failed due to acidification and micro-aeration of SS was unstable due to high solids content and viscosity, micro-aeration improved specific biogas and methane yields by 21.1 % and 13.1 %, respectively, at the FW:SS ratio of 60:40 ((volatile solids (VS) basis). This improvement was observed at an organic loading rate of 2.25 g VS/L·d and alkalinity below 5000 mg CaCO3/L. The observed positive effect of micro-aeration was accompanied by changes in relative abundance of Aminicenantes. Functional analysis suggested that AcoD was driven by homoacetogenesis and acetoclastic methanogenesis.
Collapse
Affiliation(s)
- Wachiranon Chuenchart
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, USA; Department of Civil, Environmental and Construction Engineering (CECE), University of Hawai'i at Mānoa, USA; Quasar Energy Group, 2705 Selby Road, Wooster, OH 44691-4096, USA
| | - Christelle Sawaya
- Astani Department of Civil and Environmental Engineering, University of Southern California, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, USA; Department of Civil, Environmental and Construction Engineering (CECE), University of Hawai'i at Mānoa, USA; Affiliate Faculty, Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511, Sejong, South Korea.
| |
Collapse
|
2
|
Wang J, Wang X, Bian C, Liu J, Xiao B. Effect of aeration pretreatment on anaerobic digestion of swine manure. ENVIRONMENTAL TECHNOLOGY 2025; 46:2035-2051. [PMID: 39410839 DOI: 10.1080/09593330.2024.2416094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/02/2024] [Indexed: 04/24/2025]
Abstract
To investigate the effects of aeration pretreatment on the anaerobic digestion (AD) of swine manure, five pretreatment groups were established with dissolved oxygen (DO) in each group set to 0.0, 0.4, 0.8, 1.4, and 2.0 mg/L, respectively. The results demonstrated that compared to the non-aeration group, methane production increased to varying degrees with different aeration pretreatments (AP), with a maximum increase of 27.98% (DO = 2.0 mg/L). AP reduced the hydrogen sulfide (H2S) content of biogas. The H2S concentration in the DO = 2.0 mg/L was only 0.209%, and this represented an increased H2S removal rate of 49.27% compared to that of the DO = 0.0 mg/L (0.412%). Simultaneously, AP increases the hydrolysis rate. When the DO concentration reached 2.0 mg/L, the hydrolysis rate reached its maximum. An increase in the hydrolysis rate further enhanced the removal rate of organic matter. The organic matter removal rate was highest (36.96%) at DO = 2.0 mg/L. AP effectively prolonged the methane generation time and shortened the lag time of methane generation. AP creates a brief micro aerobic environment, accelerates substrate hydrolysis, and promotes the production and consumption of total volatile fatty acids, particularly acetic acid. Additionally, AP promoted the symbiotic relationship between Caldicoprobacter (20.93%-34.96%) and Metanosaeta (14.73%-18.45%).
Collapse
Affiliation(s)
- Juan Wang
- College of Civil Engineering, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Xindong Wang
- College of Civil Engineering, Inner Mongolia University of Technology, Hohhot, People's Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunlin Bian
- College of Civil Engineering, Inner Mongolia University of Technology, Hohhot, People's Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
4
|
Cao Q, Zhang W, Yin F, Lian T, Wang S, Zhou T, Wei X, Zhang F, Cao T, Dong H. Lactic acid production with two types of feedstocks from food waste: Effect of inoculum, temperature, micro-oxygen, and initial pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 185:25-32. [PMID: 38820781 DOI: 10.1016/j.wasman.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Lactic acid (LA) is an important chemical with broad market applications. To optimize LA production, food waste has been explored as feedstock. Due to the wide variety of food waste types, most current research studies have obtained different conclusions. This study focuses on carbohydrate-rich fruit and vegetable waste (FVW) and lipid-rich kitchen waste (KW), and the effect of inoculum, temperature, micro-oxygen, and initial pH were compared. FVW has a greater potential for LA production than KW. As an inoculum, lactic acid bacteria (LAB) significantly increased the maximum LA concentration (27.6 g/L) by 50.8 % compared with anaerobic sludge (AS). FVW exhibited optimal LA production at 37 °C with micro-oxygen. Adjustment of initial pH from 4 to 8 alleviated the inhibitory effect of accumulated LA, resulting in a 46.2 % increase in maximum LA production in FVW. The expression of functional genes associated with metabolism, genetic information processing, and environmental information processing was higher at 37 °C compared to 50 °C.
Collapse
Affiliation(s)
- Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- China Huadian Engineering Co.Ltd., Beijing 100160, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Liu Y, Ye X, Chen K, Wu X, Jiao L, Zhang H, Zhu F, Xi Y. Effect of nanobubble water on medium chain carboxylic acids production in anaerobic digestion of cow manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 184:37-51. [PMID: 38795539 DOI: 10.1016/j.wasman.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation. Three experimental groups were established, and air, H2, and N2 nanobubble water were added in the second stage. Equal amounts of deionized water were added in the control group. The results showed that nanobubble water supplemented with air significantly increased the caproic acid concentration to 15.10 g/L, which was 55.03 % greater than that of the control group. The relative abundances of Bacillus and Caproiciproducens, which are involved in chain elongation, and Syntrophomonas, which is involved in electron transfer, increased. The unique ability of air nanobubble water supplemented to break down the cellulose matrix resulted in further decomposition of the recalcitrant material in cow manure. This effect subsequently increased the number of microorganisms associated with lignocellulose degradation, increasing carbohydrate metabolism and ATP-binding cassette transporter protein activity and enhancing fatty acid cycling pathways during chain elongation. Ultimately, this approach enabled the efficient production of medium chain carboxylic acids.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing 210009, China
| | - Xiaomei Ye
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing 210009, China
| | - Xiayuan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing 210009, China
| | - Lihua Jiao
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Hongyu Zhang
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Fei Zhu
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Yonglan Xi
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China; Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic.
| |
Collapse
|
6
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
7
|
Liu K, Lv L, Li W, Wang X, Han M, Ren Z, Gao W, Wang P, Liu X, Sun L, Zhang G. Micro-aeration and leachate recirculation for the acceleration of landfill stabilization: Enhanced hydrolytic acidification by facultative bacteria. BIORESOURCE TECHNOLOGY 2023; 387:129615. [PMID: 37544542 DOI: 10.1016/j.biortech.2023.129615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
The long duration of landfill stabilization is one of the challenges faced by municipalities. In this paper, a combination of micro-aeration and leachate recirculation is used to achieve rapid degradation of organic matter in landfill waste. The results showed that the content of volatile fatty acids (VFAs) in the hydrolysis phase increased significantly and could enter the methanogenic phase quickly. Until the end of the landfill, the removal rates of chemical oxygen demand (COD), total phosphorus (TP) and ammonia nitrogen (NH4+-N) by micro-aeration and leachate recirculation reached 80.17 %, 48.30 % and 48.56 %, respectively, and the organic matter degradation rate reached 50 %. Micro-aeration and leachate recirculation enhanced the abundance of facultative hydrolytic bacteria such as Rummeliibacillus and Bacillus and the oxygen tolerance of Methanobrevibacter and Methanoculleus. Micro-aeration and leachate recirculation improved the organic matter degradation efficiency of landfill waste by promoting the growth of functional microorganisms.
Collapse
Affiliation(s)
- Kaili Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
8
|
Huiliñir C, Pagés-Díaz J, Vargas G, Vega S, Lauzurique Y, Palominos N. Microaerobic condition as pretreatment for improving anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2023:129249. [PMID: 37268090 DOI: 10.1016/j.biortech.2023.129249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Pretreatment of waste before anaerobic digestion (AD) has been extensively studied during the last decades. One of the biological pretreatments studied is the microaeration. This review examines this process, including parameters and applications to different substrates at the lab, pilot and industrial scales, to guide further improvement in large-scale applications. The underlying mechanisms of accelerating hydrolysis and its effects on microbial diversity and enzymatic production were reviewed. In addition, modelling of the process and energetic and financial analysis is presented, showing that microaerobic pretreatment is commercially attractive under certain conditions. Finally, challenges and future perspectives were also highlighted to promote the development of microaeration as a pretreatment before AD.
Collapse
Affiliation(s)
- César Huiliñir
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile.
| | - Jhosané Pagés-Díaz
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Gustavo Vargas
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Sylvana Vega
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Yeney Lauzurique
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Nicolás Palominos
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| |
Collapse
|
9
|
Chen W, Yin C, Li J, Sun W, Li Y, Wang C, Pi Y, Cordero G, Li X, Jiang X. Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets. BIOLOGY 2023; 12:biology12030441. [PMID: 36979134 PMCID: PMC10045620 DOI: 10.3390/biology12030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
This study was conducted to investigate the effects of dietary supplementation with stimbiotics (STB) on growth performance, diarrhoea incidence, plasma antioxidant capacity, immunoglobulin concentration and hormone levels, and faecal microorganisms in weaned piglets. Compared with the control (CT) group, the addition of STB improved the body weight (BW) of piglets on days 28 and 42 (p < 0.05) and increased daily weight gain and daily feed intake from days 14–28 and throughout the trial period (p < 0.05). Correspondingly, the plasma insulin-like growth factor 1 (IGF-1) level on day 42 was significantly improved by STB (p < 0.05). VistaPros (VP) group levels of immunoglobulin (Ig) A and G were significantly higher on days 14 and 42 (p < 0.05) than the CT group levels. In addition, the activity of plasma catalase tended to be increased on day 14 (p = 0.053) in the VP group, as for superoxide dismutase, glutathione peroxidase, and malondialdehyde, STB did not significantly affect their levels (p > 0.05). Moreover, dietary STB increased the relative abundance of beneficial bacteria, including norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Parabacteroides, and unclassified_f__Oscillospiraceae. In summary, STB improved the immunity and IGF-1 levels in the plasma of weaned piglets and consequently promoted the growth performance of weaned piglets.
Collapse
Affiliation(s)
- Wenning Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenggang Yin
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengwei Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.P.); (X.J.); Tel.: +86-10-82108134 (X.J.)
| | | | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.P.); (X.J.); Tel.: +86-10-82108134 (X.J.)
| |
Collapse
|
10
|
Enhancing Biobased Volatile Fatty Acids Production from Olive Mill Solid Waste by Optimization of pH and Substrate to Inoculum Ratio. Processes (Basel) 2023. [DOI: 10.3390/pr11020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The pH and substrate-to-inoculum ratio (S/I) are important parameters in the anaerobic fermentation of agroindustrial residues, and therefore the optimization of these two parameters is needed for a stable, efficient, and sustainable reactor operation. In this work, the parameters pH (5–9) and S/I (0.5–3 gVS gVS−1) were optimized to produce biobased volatile fatty acids (VFAs) from hydrothermally pretreated olive mill solid waste (HPOMSW). The response variables evaluated in the Doehlert design were total VFAs concentration (tVFAs) (mg L−1) and amounts (%) of isobutyric, butyric, isovaleric, and valeric acids on the VFAs profile. The pH was the variable that most influenced the mixed culture fermentation of HPOMSW, proving to be a key parameter in the process. Microbial community analyses of conditions 1 (S/I = 3 gVS gVS−1 and pH = 7) and 4 (S/I = 1.13 gVS gVS−1 and pH = 5) showed that Proteobacteria and Firmicutes accounted for more than 87% of the total microorganisms identified for both conditions. In addition, the second-order model best fitted the experimental data for the VFAs production at the desirable condition (S/I = 3 gVS gVS−1 and pH = 8).
Collapse
|
11
|
Cao Q, Zhang W, Lian T, Wang S, Yin F, Zhou T, Wei X, Dong H. Revealing mechanism of micro-aeration for enhancing volatile fatty acids production from swine manure. BIORESOURCE TECHNOLOGY 2022; 365:128140. [PMID: 36252761 DOI: 10.1016/j.biortech.2022.128140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Micro-aeration is considered a new strategy for improving volatile fatty acids (VFAs) production of agricultural waste. This study investigated the effect and mechanism of micro-aeration of air and oxygen (O2) on VFAs production from swine manure. The results showed that Air-micro-aeration had the most significant improvement effect, with the highest VFAs of 8.21 g/L, which was increased by 22.4%. Moreover, the mixing effects of different micro-aeration were limited, and the microbial communities significantly varied. Firmicutes and Bacteroidota were the dominant hydrolytic and acidogenic bacteria, and Air-micro-aeration preferentially promoted electron transfer activity and energy generation. Methanosarcina, Methanocorpusculum, and Methanobrevibacter can adapt to environmental changes according to their different oxygen tolerance, and the consumption and conversion of VFAs by methanogens were slow under Air-micro-aeration condition. This study revealed mechanism of micro-aeration for improving VFAs production from swine manure, providing a theoretical basis for micro-aeration regulation optimization.
Collapse
Affiliation(s)
- Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoman Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|