1
|
Meng X, Xu X, Huang T, Wang Q, Ai W, Qian F, Zhuang J. Autotrophic biological nitrogen removal in a non-aerated algae-partial nitritation /anammox system: Long-term performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125021. [PMID: 40106988 DOI: 10.1016/j.jenvman.2025.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
This study demonstrated the long-term process stability of algal-partial nitritation/anammox (A-PN/A) in an operational operation condition and gained insight into the mechanism during the photoperiod. Results showed that an efficient nitrogen removal characteristic was obtained under the operational conditions: algae (Oocystis borgei) to PN/A sludge mass ratio of 1:5, light intensity of 2000 lux, and photoperiod of 12:12. Moreover, in a long-term operation, the total inorganic nitrogen removal efficiency could be stabilized at 86 %. Based on Flow cytometry analysis and high-throughput sequencing, the proportion of Chlorophyta exhibited a distinct upward trend, which could provide oxygen for ammonia-oxidizing bacteria and protect anammox bacteria from photooxidative damage. In a typical light-dark cycle assay, unexpectedly, little nitrite accumulated in a typical photoperiod, indicating the partial nitritation and anammox process co-occurred in the whole experiment. There was a higher nitrogen removal rate and higher transcript levels of amoA and hzsA in light period than dark period. While the dark period played a key role in the suppression of nitrite-oxidizing bacteria genus Nitrospira and nxrB inhibition to maintain stable A-PN/A, which was proved by whole-light batch experiments.
Collapse
Affiliation(s)
- Xiaoyi Meng
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Tianyin Huang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Qingheng Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Ai
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feiyue Qian
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jinlong Zhuang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Parde D, Behera M, Dash RR. Assessment of reactor configurations and key factors for enhanced anammox-based nitrogen removal. CHEMOSPHERE 2025; 370:143972. [PMID: 39694283 DOI: 10.1016/j.chemosphere.2024.143972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Wastewater treatment processes are continually evolving to meet stringent environmental standards while optimizing energy consumption and operational costs. With significant advantages over more traditional approaches, the anammox process has become a hopeful substitute for nitrogen removal. The objective of this work was to evaluate upflow anaerobic sludge blanket reactor (UASBR), moving bed biofilm reactor (MBBR), and sequential batch reactor (SBR) among diverse reactor configurations, in culturing anammox bacteria and achieving nitrogen removal efficiencies. Synthetic wastewater containing NH4+-N concentration and NO2--N concentration of 80 ± 5 mg/L was introduced to the reactors, and observations were made for up to 150 days. This study found that the MBBR demonstrated superior anammox activity, achieving a total nitrogen removal efficiency (TNRE) of 94 ± 3%, SBR exhibited a TNRE of approximately 85 ± 3%, while UASB displayed TNRE of 73 ± 3%. The effect of varying carbon-to-nitrogen (C/N) ratios on nitrogen removal efficiencies was investigated, revealing a decrease in TNRE as the C/N ratio increased from 3 to 8. This study demonstrated the enhancing and inhibitory effects of C/N ratio, NO₂--N, and Fe concentrations. It revealed that Fe concentrations between 1 and 5 mg/L increase specific anammox activity (SAA), while concentrations between 5 and 10 mg/L negatively impact it. Additionally, NO₂--N concentrations above 150 mg/L significantly reduce SAA. Furthermore, a 16S rRNA metagenomic analysis of MBBR sludge samples revealed the significant presence of Candidatus Brocadia bacteria, constituting 20.4% of the microbial community. This research highlights the potential of MBBR in fostering anammox reactions and achieving efficient nitrogen removal in wastewater treatment applications.
Collapse
Affiliation(s)
- Divyesh Parde
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Jatni, Argul, Odisha, 752050, India.
| | - Manaswini Behera
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Jatni, Argul, Odisha, 752050, India.
| | - Rajesh Roshan Dash
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Jatni, Argul, Odisha, 752050, India
| |
Collapse
|
3
|
Guo Q, Chen X, Gong H, Yang J, Li S, Zhu D, Wang X, Li K, Zhang Y, Zhou S, Chen K, Dai X. Effect of inoculated sludge concentration on start-up of anammox reactor: Nitrogen removal performance and metabolic pathways. BIORESOURCE TECHNOLOGY 2025; 418:131883. [PMID: 39603479 DOI: 10.1016/j.biortech.2024.131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/03/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
The anammox process is efficient for nitrogen removal but faces challenges due to slow bacterial growth and limited inoculated sludge supply. This study examined the effects of different inoculated sludge concentrations (3.5, 7, and 14 g/L) on start-up and nitrogen metabolism in anammox reactors. Three identical reactors were operated under controlled conditions, with comprehensive analysis of nitrogen removal efficiency, sludge characteristics, and microbial community dynamics through metagenomic and transcriptomic approaches. Results demonstrated that higher inoculated sludge concentrations accelerated reactor start-up, with the 14 g/L reactor achieving stable operation in 13 days compared to 44 days for the 3.5 g/L reactor. However, the improvement in nitrogen removal rate showed a boundary effect, not proportional to the increase in sludge concentration. Notably, reactors with higher inoculated sludge concentrations exhibited lower sludge loads but higher sludge yield coefficients. Metagenomic analysis revealed Candidatus Kuenenia as the dominant anammox bacteria, with decreasing hydrazine dehydrogenase (hdh) gene expression levels observed at higher sludge concentrations, suggesting hydrazine synthesis as a potential rate-limiting step. This study provides novel insights into the optimal range of inoculated sludge concentration for anammox reactor start-up and elucidates the underlying metabolic mechanisms, offering valuable guidance for practical engineering applications.
Collapse
Affiliation(s)
- Qian Guo
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Centre, China Three Gorges Corporation, Wuhan 430010, Hubei, China; National Engineering Research Centre of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, Hubei, China
| | - Hui Gong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Jing Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Shuo Li
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 201306, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Centre, China Three Gorges Corporation, Wuhan 430010, Hubei, China; National Engineering Research Centre of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, Hubei, China
| | - Kun Li
- YANGTZE Eco-Environment Engineering Research Centre, China Three Gorges Corporation, Wuhan 430010, Hubei, China; National Engineering Research Centre of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, Hubei, China
| | - Yanyan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Shuyan Zhou
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Kejin Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Chen G, Li J, Zhang S, Gao X, Gu C, Lv X, Peng Y. Novel Anoxic-Anaerobic-Oxic process successfully enriched anammox bacteria under actual municipal wastewater. BIORESOURCE TECHNOLOGY 2024; 412:131393. [PMID: 39216698 DOI: 10.1016/j.biortech.2024.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Anaerobic ammonia oxidation (Anammox) exhibits promise for wastewater treatment,but the enrichment of anammox bacteria (AnAOB) in municipal wastewater treatment plants is a significant challenge. This study constructed a novel Anoxic-Anaerobic-Oxic (AAnO) process with a pure biofilm anoxic zone fed with actual fluctuating municipal wastewater and operated for six months to enrich AnAOB at ambient temperature. High-throughput sequencing (HTS), qPCR, and fluorescence in situ hybridization showed that AnAOB were successfully enriched in the anoxic biofilms, reaching 1.56 % relative abundance on day 75 detected by HTS. During the period from day 130 to day 186, the anammox process contributed to 55.8 ± 19.2 % of the nitrogen removal in the anoxic zone. Phylogenetic analysis revealed this AnAOB species was closely related to Candidatus Brocadia fulgida. This study provides technical support for the application of anammox in mainstream wastewater.
Collapse
Affiliation(s)
- Guo Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Xiaoyu Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Changkun Gu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xintao Lv
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Deng L, Yuan Z, Ma Y, Qin Y, Chen Y. Effects of different substrate ratios on the enrichment of anammox bacteria at low substrate concentration. CHEMOSPHERE 2024; 364:143222. [PMID: 39236917 DOI: 10.1016/j.chemosphere.2024.143222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Anammox bacteria (AnAOB) can be easily enriched under high temperatures and high substrate concentrations, while the application of the mainstream anammox process in low substrate municipal sewage is still relatively uncommon. Therefore, this study investigated the enrichment of AnAOB under conditions of low ammonia nitrogen and nitrite concentration at 25 °C. Results showed that using inoculated aerobic sludge, four ASBRs (R1, R2, R3 and R4) were successfully initiated with different influent substrate (NO2--N/NH4+-N) ratios of 1.2, 1.32, 1.4 and 1.5, respectively, with reactor start-up times were 162, 150, 120 and 134 days, respectively. The values of ΔNO2--N/ΔNH4+-N in reactors were stable at 1.17, 1.32, 1.43 and 1.53 respectively. The increase in influent substrate ratios resulted in improved TN removal rates and accelerated consumption of chemical oxygen demand (COD) during the initial start-up stage. The maximum TN removal rates achieved in the four reactors were 76.09%, 79.24%, 82.82% and 82.63%, respectively. The color of sludge gradually changes from yellowish-brown to reddish-brown. Furthermore, the surface of sludge exhibited a porous mineral structure, with crater-like cavities. The dominant anammox species in the system was identified as Candida Brocadia (3.04%). According to qPCR, the abundance of hzsB in the system is 1.65 × 1012 copies/g VSS, confirming the effective enrichment of AnAOB.
Collapse
Affiliation(s)
- Le Deng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou, 730070, PR China
| | - Zhongling Yuan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou, 730070, PR China
| | - Yanhong Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou, 730070, PR China
| | - Yanrong Qin
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou, 730070, PR China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou, 730070, PR China.
| |
Collapse
|
6
|
Feng W, Zhang Q, Li J, Duan C, Peng Y. Novel anammox granules formation from conventional activated sludge for municipal wastewater treatment through flocs management. BIORESOURCE TECHNOLOGY 2024; 396:130384. [PMID: 38281548 DOI: 10.1016/j.biortech.2024.130384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The direct integration of anammox process into municipal wastewater treatment has caused widespread concern, but the lack of anammox seeds limited its real application. This study successfully cultivated anammox granules (322.0 μm) from conventional activated sludge treating municipal wastewater. Through ultra-low floc sludge retention times of 8d, nitrifiers on flocs were eliminated and partial nitrification was realized. Furthermore, highly bacteria-enriched granules were initially formed, with Nitrosomonas and Ca. Competibacter 4-fold higher than that of flocs. Specific staining results revealed the microbial interaction with Ca. Brocadia, considering that Ca. Competibacter and Nitrosomonas correspondingly identified in the inner and outer layers of granules. The percentage of Ca. Brocadia present on the granules increased substantially from 0.0 % to 3.0 %, accompanied by a nitrogen removal rate of 0.3 kg·m-3·d-1. Our findings revealed a valuable reference for the anammox bacteria in-situ enrichment under mainstream conditions, which provides theoretical guidance for anammox-based processes practical application.
Collapse
Affiliation(s)
- Wanyi Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenxue Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
7
|
Huang J, Wang X, Qi Z, Zhang M, Kang R, Liu C, Li D. Quantitative effect of adding percentages of anammox granules on the start-up process and microbial community analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119361. [PMID: 37913619 DOI: 10.1016/j.jenvman.2023.119361] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is challenging due to its long start-up duration and high demand for mature anammox seed sludge. However, adding a small amount of anammox sludge to the inoculum can be a reasonable solution. This study investigated the effect of adding percentage of anammox granules (0, 1, 2, 4, and 8%) in the seed sludge on the anammox start-up process. The anammox process was achieved in all five reactors after 55, 6, 5, 3 and 0 days. Increasing the adding percentage effectively shortened the duration of lag phase and cell lysis, but had little effect on the final nitrogen removal performance, except for 4% adding percentage. Families of Brocadiaceae, Burkholderiaceae, Ignavibacteriaceae, SJA-28, and Rhodocyclaceae were dominant, with a core microbiota of eight operational taxonomic unites (OTUs), and Candidatus Brocadia fulgida became the dominant anammox species. Seven synergistic members with anammox bacteria were identified by correlation network analysis. Major potential functional groups involved in C and N cycle were also observed by FAPROTAX. Together with the qPCR and sequencing results, it was suggested that more than 2% of adding percentages would result in a short lag phase, rapid growth rate in elevation stage, high final performances, and anammox bacteria abundance comparable to that in the anammox seed sludge. This crucial finding indicated the feasibility of economical and rapid start-up of the anammox process with a minimum amount of anammox seed sludge.
Collapse
Affiliation(s)
- Jialu Huang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaolong Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zhiqiang Qi
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Mengqian Zhang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ruiqin Kang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Xiao C, Wan K, Hu J, Deng X, Liu X, Zhou F, Yu J, Chi R. Performance changes in the anammox process under the stress of rare-earth element Ce(III) and the evolution of microbial community and functional genes. BIORESOURCE TECHNOLOGY 2023:129349. [PMID: 37336455 DOI: 10.1016/j.biortech.2023.129349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The high Ce(III) content in ionic rare-earth tailings wastewater has hindered the application of anammox process in this field. Here, the effect of Ce(III) on the performance of anammox processes was investigated, and the evolution of microbial communities and functional genes was explored using metagenomic sequencing. The results showed that the reactor nitrogen removal rate decreased when the Ce(III) concentration reached 25 mg/L, although ammonia nitrogen removal (92.31%) and nitrogen removal efficiency (81.33%) remained at a high level; however, both showed a significant decreasing trend. The relative abundance of anammox bacteria increased continuously from P1-P5, reaching 48.81%, whereas the relative abundance of Candidatus jettenia reached 33.71% at P5, which surpassed that of Candidatus brocadia as the most abundant anammox bacteria, and further analysis of functional genes and metabolic pathways revealed that Candidatus brocadia was richer in biochemical metabolic genes, whereas Candidatus jettenia had richer efflux genes.
Collapse
Affiliation(s)
- Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| | - Kai Wan
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Jinggang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| |
Collapse
|
9
|
Zhao Y, Li J, Liu Q, Qi Z, Li X, Zhang Q, Sui J, Wang C, Peng Y. Fast start-up and stable operation of mainstream anammox without inoculation in an A 2/O process treating low COD/N real municipal wastewater. WATER RESEARCH 2023; 231:119598. [PMID: 36669306 DOI: 10.1016/j.watres.2023.119598] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
It is of great significance to start up the anammox process in the most commonly used anaerobic-anoxic-oxic (A2/O) process in treating mainstream municipal wastewater. Recently, partial-denitrification/anammox (PD/A) has attracted increasing interest as a new avenue in mainstream. This study investigated the in situ start-up of PD/A process in a traditional A2/O process. The PD/A system was rapidly started up within 60 days by adding virgin carriers into the anoxic zone and then run stably for the next 90 days. The in situ anammox activity reached 1.0 ± 0.1 mg NH4+-N/L/h contributing 37.9 ± 6.2% of total nitrogen removal. As a result, the nitrogen removal efficiency of the system increased by 16.9%. The anammox bacteria (AnAOB) on the anoxic biofilms were enriched with a doubling time of 14.53d, and the relative abundance reached 2.49% on day 150. Phylogenetic analysis showed the dominant AnAOB was related to Ca. Brocadia sp. 40, which was the only detected anammox genus in the anoxic biofilm from start-up to stable operation. Batch tests and qPCR results revealed that compared with the floc sludge, the anoxic biofilms exhibited NO2- accumulation driven by PD and performed a better coordination between denitrifiers and AnAOB. Overall, this study provides great confidence for the in situ fast start-up of mainstream anammox using conventional activated sludge.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Zhao Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jun Sui
- Shouhui Lantian Engineering and Technology Co.Ltd, Guangdong 510075, China
| | - Chuanxin Wang
- Shouhui Lantian Engineering and Technology Co.Ltd, Guangdong 510075, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
The granular sludge membrane bioreactor: A new tool to enhance Anammox performance and alleviate membrane fouling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Luo J, Yang J, Li S, Li X, Chang G, Yang Y. Initiating an anaerobic ammonium oxidation reactor by inoculation with starved anaerobic ammonium oxidation sludge and modified carriers. BIORESOURCE TECHNOLOGY 2022; 359:127438. [PMID: 35700901 DOI: 10.1016/j.biortech.2022.127438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Prolonged starved anammox sludge (SAS) obtained during initial rejuvenation was inoculated into a reactor together with activated sludge (AS), anaerobic granular sludge (AGS) and modified carriers consisting of honeycomb carrier with high biological interception and activated carbon carrier with high adsorption performance. SAS accounted for 5% of the inoculated sludge. The anammox process was started and operated at around 25℃. After 160 days, the nitrogen loading rate and nitrogen removal rate reached 1.12 kgN·m-3·d-1 and 0.97 kgN·m-3·d-1, respectively. Obvious red anammox biofilms were observed on the modified carriers. Microbial community analysis showed that the relative abundance of anammox bacteria increased from < 0.1% to 22.96%. Candidatus Jettenia and Candidatus Brocadia were the dominating anammox species. This work demonstrates the potential to reuse SAS to improve the start-up efficiency of anammox reactors, which makes good economic sense.
Collapse
Affiliation(s)
- Jingwen Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Genwang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yifei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|