1
|
Dong L, Wang W, Xie Q, Du X, Wang Y, Niu XZ, Cao G. Self-adaptable HAc/NaAc buffer system enhanced biohydrogen production from dark fermentation of cellulose. BIORESOURCE TECHNOLOGY 2025; 416:131738. [PMID: 39489314 DOI: 10.1016/j.biortech.2024.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
ThepHdecrease caused by potential accumulation and dissociation of organic acidsis considereda major challenge hindering stable and constant operation in hydrogen production. In this study, a self-adaptableHAc/NaAc buffer system was investigated based on batch dark fermentation hydrogen production (DFHP) metabolic typesto controlthe pH of fermentation process. Resultsshowedthat increasing substrate concentration resulted in lower H2 production yield, especially when the substrate concentration exceeded 10 g/L. A maximum H2yield of2326.25 mL/L was achieved at the HAc/NaAc-buffered group; productions were 2.84 times and 57.7 % higher than the control and NaOH control groups. Our buffersystem retardedthe decrease of pH, enhanced the selectivemetabolic flux of acetic acid production, promoted the growth of microorganisms, enhanced microbial secretion of cellulase, andregulatedthe ratio of NADH/NAD+. The research provided a preliminary understanding and reference for the buffer regulatory strategy on organic waste for DFHP.
Collapse
Affiliation(s)
- Lili Dong
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Wanqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiulan Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Du
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuhao Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xi-Zhi Niu
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Guangli Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Mai J, Zhu MJ, Hu BB, Zhang H, Liu ZH, Sun JF, Hu Y, Zhao L. Effects of Phaffia rhodozyma on microbial community dynamics and tobacco quality during tobacco fermentation. Front Microbiol 2024; 15:1451582. [PMID: 39355430 PMCID: PMC11442207 DOI: 10.3389/fmicb.2024.1451582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Carotenoids are important precursors of various aroma components in tobacco and play an important role in the sensory quality of tobacco. Phaffia rhodozyma is a species of Xanthophyllomyces capable of synthesizing a highly valuable carotenoid-astaxanthin, but has not yet been used in improving tobacco quality. Methods The dynamic changes of microbial community and metabolites during tobacco fermentation were analyzed in combination with microbiome and metabolome, and the quality of tobacco after fermentation was evaluated by sensory scores. Results P. rhodozyma could grow and produce carotenoids in tobacco extract, with a maximum biomass of 6.50 g/L and a maximum carotenoid production of 36.13 mg/L at 100 g/L tobacco extract. Meanwhile, the correlation analysis combined with microbiome and metabolomics showed that P. rhodozyma was significantly positively correlated with 11 metabolites such as 6-hydroxyluteolin and quercetin. Furthermore, the contents of alcohols, ketones and esters, which were important aromatic components in fermented tobacco, reached 77.57 μg/g, 58.28 μg/g and 73.51 μg/g, increasing 37.39%, 265.39% and 266.27% compared to the control group, respectively. Therefore, the aroma and flavor, and taste scores of fermented tobacco increased by 0.5 and 1.0 points respectively. Discussion This study confirmed that P. rhodozyma fermentation could effectively improve the sensory evaluation of tobacco, and provided a novel microbial fermentation method to improve tobacco quality.
Collapse
Affiliation(s)
- Jing Mai
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Hong Zhang
- Yunnan Tobacco Monopoly Bureau, Kunming, China
| | | | | | - Yang Hu
- Chuxiong State Tobacco Monopoly Bureau, Chuxiong, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
3
|
Irewale AT, Dimkpa CO, Elemike EE, Oguzie EE. Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development. Heliyon 2024; 10:e36966. [PMID: 39281463 PMCID: PMC11401212 DOI: 10.1016/j.heliyon.2024.e36966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The widespread proliferation of water hyacinth (Eichhornia crassipes) in aquatic ecosystems has raised significant ecological, environmental, and socioeconomic concerns globally. These concerns include reduced biodiversity, impeded water transportation and recreational activities, damage to marine infrastructure, and obstructions in power generation dams and irrigation systems. This review critically evaluates the challenges posed by water hyacinth (WH) and investigates potential strategies for converting its biomass into value-added agricultural products, specifically nanonutrients-fortified, biochar-based, green fertilizer. The review examines various methods for producing functional nanobiochar and green fertilizer to enhance plant nutrient uptake and improve soil nutrient retention. These methods include slow or fast pyrolysis, gasification, laser ablation, arc discharge, or chemical precipitation used for producing biochar which can then be further reduced to nano-sized biochar through ball milling, a top-down approach. Through these means, utilization of WH-derived biomass in economically viable, eco-friendly, sustainable, precision-driven, and smart agricultural practices can be achieved. The positive socioeconomic impacts of repurposing this invasive aquatic plant are also discussed, including the prospects of a circular economy, job creation, reduced agricultural input costs, increased agricultural productivity, and sustainable environmental management. Utilizing WH for nanobiochar (or nano-enabled biochar) for green fertilizer production offers a promising strategy for waste management, environmental remediation, improvement of waterway transportation infrastructure, and agricultural sustainability. To underscore the importance of this work, a metadata analysis of literature carried out reveals that an insignificant section of the body of research on WH and biochar have focused on the nano-fortification of WH biochar for fertilizer development. Therefore, this review aims to expand knowledge on the upcycling of non-food crop biomass, particularly using WH as feedstock, and provides crucial insights into a viable solution for mitigating the ecological impacts of this invasive species while enhancing agricultural productivity.
Collapse
Affiliation(s)
- Adewale T Irewale
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511 United States
| | - Elias E Elemike
- Department of Chemistry, Federal University of Petroleum Resources Effurun, Nigeria
| | - Emeka E Oguzie
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
4
|
Yang Y, Bu J, Tiong YW, Xu S, Zhang J, He Y, Zhu M, Tong YW. Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar. ENVIRONMENTAL RESEARCH 2024; 244:117946. [PMID: 38104915 DOI: 10.1016/j.envres.2023.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The industrialization of hydrogen production through dark fermentation of food waste faces challenges, such as low yields and unpredictable fermentation processes. Biochar has emerged as a promising green additive to enhance hydrogen production in dark fermentation. Our study demonstrated that the introduction of Fe-modified biochar (Fe-L600) significantly boosted hydrogen production during thermophilic dark fermentation of food waste. The addition of Fe-L600 led to a remarkable 31.19% increase in hydrogen yield and shortened the time needed for achieving stabilization of hydrogen production from 18 h to 12 h. The metabolite analysis revealed an enhancement in the butyric acid pathway as the molar ratio of acetic acid to butyric acid decreased from 3.09 to 2.69 but hydrogen yield increased from 57.12 ± 1.48 to 76.78 ± 2.77 mL/g, indicating Fe-L600 improved hydrogen yield by regulating crucial metabolic pathways of hydrogen production. The addition of Fe-L600 also promoted the release of Fe2+ and Fe3+ and increased the concentrations of Fe2+ and Fe3+ in the fermentation system, which might promote the activity of hydrogenase and ferredoxin. Microbial community analysis indicated a substantial increase in the relative abundance of Thermoanaerobacterium after thermophilic dark fermentation. The relative abundances of microorganisms responsible for hydrolysis and acidogenesis were also observed to be improved in the system with Fe-L600 addition. This research provides a feasible strategy for improving hydrogen production of food waste and deepens the understanding of the mechanisms of biochar.
Collapse
Affiliation(s)
- Yongjun Yang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, People's Republic of China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, People's Republic of China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China.
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
5
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
6
|
Yan X, Bu J, Chen X, Zhu MJ. Comparative genomic analysis reveals electron transfer pathways of Thermoanaerobacterium thermosaccharolyticum: Insights into thermophilic electroactive bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167294. [PMID: 37741387 DOI: 10.1016/j.scitotenv.2023.167294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Microbial extracellular respiration is an important energy metabolism on earth, which is significant for the elemental biogeochemical cycle. Herein, extracellular Fe(III) and electrode respiration were confirmed in Thermoanaerobacterium thermosaccharolyticum MJ2. The intra/extracellular electron transfer (IET/EET) mechanism of MJ2 was investigated by comparative genomic analysis for the first time. Morphological characterization and electrochemical properties of anode illustrated that MJ2 generated bio-electricity by forming a biofilm. The respiration chain inhibition and enzyme activity tests showed that hydrogenase with cytochrome c (Cyt-c) was involved in IET of MJ2. Noteworthily, the exogenous Cyt-c increased hydrogenase activity to promote bio-electricity generation by 92.84 %. The Cyt-c gene synteny between MJ2 and another well-known exoelectrogen (Thermincola potens JR) indicated that Cyt-c bound to the outer membrane mediated the formation of biofilm involved in EET of MJ2. This study broadened the understanding of microbial extracellular respiration diversity and provided new insights to explore the electron transfer pathways of exoelectrogens.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Jie Bu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, People's Republic of China.
| |
Collapse
|
7
|
Mai J, Hu BB, Zhu MJ. Metabolic division of labor between Acetivibrio thermocellus DSM 1313 and Thermoanaerobacterium thermosaccharolyticum MJ1 enhanced hydrogen production from lignocellulose. BIORESOURCE TECHNOLOGY 2023; 390:129871. [PMID: 37838018 DOI: 10.1016/j.biortech.2023.129871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In this consortium, DSM 1313 was responsible for degrading lignocellulose by cellulosome, while the highly efficient hydrogen-producing bacterium MJ1 consumed the sugar produced by DSM 1313 to grow and produce more hydrogen. The results showed that the maximum hydrogen production of 259.57 mL/g substrate was obtained at the inoculation ratio (OD600) of 2:1 (DSM 1313:MJ1) and substrate concentration of 10 g/L, 70.84 % higher than pure culture. Furthermore, MJ1 dominated the co-culture system by using various sugars resulting from the biodegradation of substrate, thereby relieving the inhibition of sugar on DSM 1313 and leading to more hydrogen production. In the co-culture system, the value of extracellular oxidation-reduction potential and the ratio of NAD+/NADH was lower than that of pure culture. Additionally, at the gene level, [NiFe]-hydrogenase and [FeFe]-hydrogenase related enzymes were significantly up-regulated, leading to a two-fold increase in hydrogenase activity of co-culture compared with pure culture.
Collapse
Affiliation(s)
- Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi 844006, China.
| |
Collapse
|
8
|
Yan X, Zhu MJ. Enhanced bioelectricity generation in thermophilic microbial fuel cell with lignocellulose as an electron donor by resazurin-mediated electron transfer. BIORESOURCE TECHNOLOGY 2023; 388:129764. [PMID: 37722540 DOI: 10.1016/j.biortech.2023.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Microbial fuel cell (MFC) with lignocellulose as an electron donor is considered a sustainable biorefinery. However, low lignocellulose degradation and energy output restrict the scale of application. Herein, the extracellular electron transfer (EET) capacity of Acetivibrio thermocellus DSM 1313 with lignocellulose as substrate was shown to be mediated by the self-produced flavin, and its intracellular electron transfer went through the whole respiratory chain. Thermophilic MFC with resazurin exhibited an increase in the open circuit voltage by 37.78%, and a 2.60 folds increase in power density of 77.85 mW/m2, respectively. Differential pulse voltammetry and electrochemical impedance spectroscopy analysis indicated that resazurin decreased the solution and anode charge transfer resistance, and enhanced the extracellular electrochemical activity. Furthermore, resazurin resulted in a lower redox potential, allowing preferential electron transfer to resazurin rather than flavin. This research establishes a resazurin-mediated thermophilic MFC with lignocellulose as substrate, which provides novel idea on the biomass refinery.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi 844006, China.
| |
Collapse
|
9
|
Talekar S, Ekanayake K, Holland B, Barrow C. Food waste biorefinery towards circular economy in Australia. BIORESOURCE TECHNOLOGY 2023; 388:129761. [PMID: 37696335 DOI: 10.1016/j.biortech.2023.129761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
Staggering amounts of food waste are produced in Australia, and this review provides food waste based biorefinery opportunities in moving towards a circular economy in Australia. The current food waste scenario in Australia including an overview of primary food waste sources, government regulation, and current management practices is presented. The major food waste streams include fruit and vegetable (waste from wine grapes, citrus, apple, potato, and tomato), nuts (almond processing waste), seafood (Fish waste), dairy whey, sugarcane bagasse, and household and businesses. The composition of these waste streams indicated their potential for use in biorefineries to produce value-added products via various pathways combining direct extraction and biological and thermochemical conversion. Finally, the efforts made in Australia to utilize food waste as a resource, as well as the challenges and future directions to promote the development of concrete and commercially viable technologies for food waste biorefinery, are described.
Collapse
Affiliation(s)
- Sachin Talekar
- School of Life and Environmental Sciences, Deakin University Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing Deakin University Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts Deakin University Waurn Ponds, Victoria 3216, Australia.
| | - Krishmali Ekanayake
- School of Life and Environmental Sciences, Deakin University Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing Deakin University Waurn Ponds, Victoria 3216, Australia
| | - Brendan Holland
- School of Life and Environmental Sciences, Deakin University Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts Deakin University Waurn Ponds, Victoria 3216, Australia
| | - Colin Barrow
- School of Life and Environmental Sciences, Deakin University Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing Deakin University Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts Deakin University Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
10
|
Zhang L, Tsui TH, Wah Tong Y, Sharon S, Shoseyov O, Liu R. Biochar applications in microbial fermentation processes for producing non-methane products: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023; 386:129478. [PMID: 37460021 DOI: 10.1016/j.biortech.2023.129478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The objective of this review is to encourage the technical development of biochar-assisted microbial fermentation. To this end, recent advances in biochar applications for microbial fermentation processes (i.e., non-methane products of hydrogen, acids, alcohols, and biofertilizer) have been critically reviewed, including process performance, enhanced mechanisms, and current research gaps. Key findings of enhanced mechanisms by biochar applications in biochemical conversion platforms are summarized, including supportive microbial habitats due to the immobilization effect, pH buffering due to alkalinity, nutrition supply due to being rich in nutrient elements, promoting electron transfer by acting as electron carriers, and detoxification of inhibitors due to high adsorption capacity. The current technical limitations and biochar's industrial applications in microbial fermentation processes are also discussed. Finally, suggestions like exploring functionalized biochar materials, biochar's automatic addition and pilot-scale demonstration are proposed. This review would further promote biochar applications in microbial fermentation processes for the production of non-methane products.
Collapse
Affiliation(s)
- Le Zhang
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - To-Hung Tsui
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sigal Sharon
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Oded Shoseyov
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
11
|
Zhang Q, Tan S, Zhang Z, Yuan C, Lou Z, Liu W. Treatment of Landfill Leachate Reverse Osmosis Concentrates by Advanced Oxidation-Heterotrophic Nitrification-Aerobic Denitrification Combination process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88627-88640. [PMID: 37440142 DOI: 10.1007/s11356-023-28504-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
This study aimed to develop a multistage treatment system for highly toxic wastewater named reverse osmosis concentrates of landfill leachate. Therefore, a combination of the ammonia stripping process (ASP), catalytic ozone oxidation process (COP), and heterotrophic nitrification-aerobic denitrification process (HNADP) was proposed and the quality of effluent was evaluated for the concentration of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN). ASP had moderate removal efficiency of NH4+-N, and TN in the effluent. COP was catalyzed by cerium-supported-activated carbon achieved good performance in disposal of COD. The effluent of HNADP had the most significant removal efficiency of COD, NH4+-N, and TN. As a result, the effluent of combined process successfully met the discharge standards for NH4+-N and TN according to Table 1 of GB 16889-2008 in China. To investigate the microbial mechanism of pollutant removal in HNADP, 16S rRNA high-throughput sequencing was performed and the results suggested that the relative abundance and diversity of microorganisms fluctuated with the changes of COD/TN ratio in HNADP. Truepera and Halomonas were identified as the key genera involved in the simultaneous degradation of COD and nitrogen-containing pollutants, the functional genes (hao, amoA, nirS, and nirK) were predicted in nitrification and denitrification process. Overall, this study demonstrates a feasible multistage system for treatment of concentrates and propose that further explorations of combined techniques may lead to even more satisfactory removal efficiencies.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 40054, China.
| | - Senwen Tan
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 40054, China
| | - Zhengyi Zhang
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 40054, China
| | - Chunbo Yuan
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 40054, China
| | - Ziyang Lou
- Department of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Wei Liu
- Chongqing Research Institute, Shanghai Jiao Tong University, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing, 401147, China
| |
Collapse
|
12
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Zhang YT, Wei W, Wang C, Ni BJ. Understanding and mitigating the distinctive stresses induced by diverse microplastics on anaerobic hydrogen-producing granular sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129771. [PMID: 36027748 DOI: 10.1016/j.jhazmat.2022.129771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This work comparatively studied the different stress responses of anaerobic hydrogen-producing granular sludge (HPG) to several typical MPs in wastewater, i.e., polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) MPs. A new approach to mitigating the inhibition caused by MPs based on biochar was then proposed. The results displayed that microbe in HPG had diverse tolerances to PE-MPs, PET-MPs and PVC-MPs, with the hydrogen production downgraded to 82.0 ± 3.2 %, 72.3 ± 2.5 % and 66.6 ± 2.3 % (p < 0.05) of control respectively, due to the distinct leachates toxicities and oxidative stress level induced by different MPs. The discrepant mitigation reflected in the hydrogen yields of biochar-based HPGs raised back to 88.7 ± 1.4 %, 85.3 ± 3.8 % and 88.5 ± 3.5 % of control. The MPs induced disintegrated granule morphology, fragile microbial viability and impaired defensive function of extracellular polymeric substances were restored by biochar. The effective mitigation was revealed to be due to the strong adsorption of MPs by biochar, reducing direct contact between microbes and MPs. Biochar addition also enhanced protection for HPG by increasing EPS secretion and weakened the oxidative damage to anaerobes induced by MPs. Biochar manifested the disparate adsorption properties of three MPs. The most superior mitigation in HPG contaminated by PVC-MPs was attributed to the strongest affinity of biochar to PVC-MPs and effective alleviation of PVC leachates toxicity.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
14
|
Chen X, Yuan C, Zhu Y, Liu H, Chen W, Zhang Q. Bioaugmentation with Acinetobacter sp. TAC-1 to enhance nitrogen removal in swine wastewater by moving bed biofilm reactor inoculated with bacteria. BIORESOURCE TECHNOLOGY 2022; 359:127506. [PMID: 35750120 DOI: 10.1016/j.biortech.2022.127506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
To enhance the performance of moving bed biofilm reactor (MBBR) inoculated with heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria, bioaugmentation with Acinetobacter sp. TAC-1 was firstly employed and then the treatment performance for real swine wastewater was presented in this study. Results indicated that NH4+-N and TN removal rates of bioaugmented reactor were significantly improved from 16.53 mg/L/h and 16.15 mg/L/h to 24.58 mg/L/h and 24.45 mg/L/h, respectively. The efficient removal performance (NH4+-N 95.01%, TN 86.40%) for real swine wastewater was achieved within 24 h. Microbial analysis indicated that the composition of functional bacteria varied with the introduction of Acinetobacter sp. TAC-1, especially the abundance of Acinetobacter, Paracoccus and Rhodococcus related to the nitrogen removal. Furthermore, bioaugmentation with Acinetobacter sp. TAC-1 increased abundance of enzymes and functional genes (nirS, nirK and norZ) corresponding to denitrification that may be responsible for the enhanced nitrogen removal performance.
Collapse
Affiliation(s)
- Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Chunbo Yuan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Yunan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Huan Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Wang Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 40054, China.
| |
Collapse
|