1
|
Yu X, Gong R, Wu M, Gao Y, Li Q, Zhang F, Rahmaninia M, Li B, Tang Y. Impact of anti-solvents on the characteristics of hemicellulose fractionated from bleached bamboo pulp using lithium bromide hydrates. Carbohydr Polym 2025; 360:123617. [PMID: 40399025 DOI: 10.1016/j.carbpol.2025.123617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 05/23/2025]
Abstract
Selective fractionation/dissolution of hemicellulose with no or less degradation from biomass resources is a prerequisite for its high-value material utilization. Yet, the impact of anti-solvents on the properties of regenerated/precipitated hemicellulose after dissolution is still unclear. Herein, lithium bromide (LiBr) hydrate as a green solvent was used for fractionating hemicellulose from bleached bamboo pulp (BBP). Subsequently, the effect of anti-solvents (i.e., water, ethanol and acetone) on the characteristics of regenerated hemicellulose was comprehensively investigated. Results showed that the maximum removal rate of hemicellulose was 84.4 %, and the corresponding yield of pure hemicellulose precipitated by acetone was up to 84.0 %, which was influenced by the polarity of anti-solvent. Structural characterizations revealed that resultant hemicelluloses with degree of polymerization of 184-290 were arabinoxylan, and the molecular structure of the regenerated hemicellulose did not change significantly after fractionation and regeneration. However, importantly, it was found that the hemicellulose regenerated with different anti-solvents exhibited distinct multiscale morphology and nanostructures, which was attributed to the different reconstruction of hydrogen bonding and different extent of recrystallization among hemicellulose chains during regeneration with distinct anti-solvents. The obtained results could provide a theoretical basis for further modification, processing, and more advanced applications of hemicellulose.
Collapse
Affiliation(s)
- Xuejing Yu
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China; State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Runzhu Gong
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Meiyan Wu
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yufa Gao
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, China
| | - Fang Zhang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, 46417-76489 Noor, Iran
| | - Bin Li
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Energy Institute, Qingdao 266101, China.
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Long X, Yao M, Wang S, Ren C, Zhao X, Qin C, Liang C, Huang C, Yao S. Efficient Separation of Poplar Lignin Using a New Carboxylic Acid-Based Deep Eutectic Solvents - Choline Chloride/Malonic Acid. CHEMSUSCHEM 2025; 18:e202402345. [PMID: 39719884 DOI: 10.1002/cssc.202402345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/26/2024]
Abstract
Separation of lignin by pretreatment is an important step in biomass refining. This study investigated how a novel dicarboxylic acid-based deep eutectic solvent (DES) - choline chloride (ChCl)/malonic acid (MA) - affected the process of separating lignin from poplar. At 140 °C for 3.0 h, with a ChCl: MA molar ratio of 1: 3.5, the ideal pretreatment conditions were met, and 91.8 % lignin was obtained. Even after five DES reuses, the consistent and effective separation efficiency of 77.9 % remains unchanged. The hydrolysate contained 92.4 % of the recovered lignin, with a purity of 94.6 %. Moreover, the regenerated lignin obtained through the new DES pretreatment exhibited a high phenolic hydroxyl content of 1.9 mmol g-1 and a low polydispersity index of 1.4. The results showed efficient and selective separation of lignin using the new binary carboxylic acid-based DES pretreatment was achieved. This research offers a novel approach to effectively separate wood fiber biomass and extract valuable lignin.
Collapse
Affiliation(s)
- Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Mingzhu Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chuangqi Ren
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xiao Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
3
|
Liu Y, Wang S, Liang J, Lu L, Xie Y, Qin C, Liang C, Huang C, Yao S. Optimizing lignin demethylation using a novel proton- based ionic liquid: 1, 2-propanediamine/glycolic acid catalyst. Int J Biol Macromol 2024; 279:135172. [PMID: 39208526 DOI: 10.1016/j.ijbiomac.2024.135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Demethylation modification of lignin is an effective strategy to overcome the barrier to its high-value conversion. The purpose of this study focuses on the new proton-based ionic liquid (PIL) 1, 2-propanediamine/glycolic acid (PD/GA) as a catalyst and solvent to achieve the targeted oxidation of lignin. The PD/GA solvents have higher selectivity and efficiency. Optimal phenolic hydroxyl (PH)-increment was achieved, demonstrating enhanced demethylating effect on lignin by modulating the acid-base molar ratio, reaction temperature, and reaction time. Compared to ethanolamine/acetic acid (CE/AC) treatment, the PD/GA treatment at molar ratio 1.25, temperature 60 °C, and 3 h increased the PH-content from 37.74 to 59.91 %. Additionally, the lignin treated with PD/GA exhibited excellent recyclability, featuring a larger Brunauer-Emmett-Teller surface area (1.45 m2.g-1), total pore volume (9.51*10-3 cm3.g-1), and mesoporous size (26.15 nm). The treated lignin yielded maximum ultraviolet resistance and antioxidant activity. These results present new avenues for the development of green and efficient lignin demethylation methods.
Collapse
Affiliation(s)
- Yi Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lirong Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yi Xie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
4
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
5
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
6
|
Jiang H, Nie J, Zeng L, Zhu F, Gao Z, Zhang A, Xie J, Chen Y. Selective Removal of Hemicellulose by Diluted Sulfuric Acid Assisted by Aluminum Sulfate. Molecules 2024; 29:2027. [PMID: 38731518 PMCID: PMC11085920 DOI: 10.3390/molecules29092027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Hemicellulose can be selectively removed by acid pretreatment. In this study, selective removal of hemicellulose was achieved using dilute sulfuric acid assisted by aluminum sulfate pretreatment. The optimal pretreatment conditions were 160 °C, 1.5 wt% aluminum sulfate, 0.7 wt% dilute sulfuric acid, and 40 min. A component analysis showed that the removal rate of hemicellulose and lignin reached 98.05% and 9.01%, respectively, which indicated that hemicellulose was removed with high selectivity by dilute sulfuric acid assisted by aluminum sulfate pretreatment. Structural characterizations (SEM, FTIR, BET, TGA, and XRD) showed that pretreatment changed the roughness, crystallinity, pore size, and functional groups of corn straw, which was beneficial to improve the efficiency of enzymatic hydrolysis. This study provides a new approach for the high-selectivity separation of hemicellulose, thereby offering novel insights for its subsequent high-value utilization.
Collapse
Affiliation(s)
- Huabin Jiang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Jiaqi Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Lei Zeng
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Fei Zhu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Zhongwang Gao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Aiping Zhang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Yong Chen
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| |
Collapse
|
7
|
Wu Y, Chen H, Wang B, Xu J, Li J, Ying G, Chen K. Extraction of Ampelopsis japonica polysaccharides using p-toluenesulfonic acid assisted n-butanol three-phase partitioning: Physicochemical, rheological characterization and antioxidant activity. Int J Biol Macromol 2024; 254:127699. [PMID: 37913878 DOI: 10.1016/j.ijbiomac.2023.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| |
Collapse
|
8
|
Hou Y, Wang S, Deng B, Ma Y, Long X, Qin C, Liang C, Huang C, Yao S. Selective separation of hemicellulose from poplar by hydrothermal pretreatment with ferric chloride and pH buffer. Int J Biol Macromol 2023; 251:126374. [PMID: 37595709 DOI: 10.1016/j.ijbiomac.2023.126374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
As an environmentally friendly lignocellulosic biomass separation technology, hydrothermal pretreatment (HP) has a strong application prospect. However, the low separation efficiency is a main factor limiting its application. In this study, the poplar components were separated using HP with ferric chloride and pH buffer (HFB). The optimal conditions were ferric chloride concentration of 0.10 M, reaction temperature of 150 °C, reaction time of 15 min and pH 1.9. The separation of hemicellulose was increased 34.03 % to 77.02 %. The pH buffering resulted in the highest cellulose and lignin retention yields compared to ferric chloride pretreatment (FC). The high efficiency separation of hemicellulose via HFB pretreatment inhibited the degradation of xylose. The hydrolysate was effectively reused for five times. The fiber crystallinity index reached 60.05 %, and the highest C/O ratio was obtained. The results provide theoretical support for improving the efficiency of HP and promoting its application.
Collapse
Affiliation(s)
- Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yun Ma
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
9
|
Fang S, Xia Q, Zhang L, Zhan P, Qing Y, Wu Z, Wang H, Shao L, Liu N, He J, Liu J. Differentiated Fractionation of Various Biomass Resources by p-Toluenesulfonic Acid at Mild Conditions. ACS OMEGA 2023; 8:24247-24255. [PMID: 37457452 PMCID: PMC10339397 DOI: 10.1021/acsomega.3c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Biomass is the ideal substitute for petrochemical resources because of its renewable and abundant sources. p-Toluenesulfonic acid (p-TsOH) can effectively separate lignin from biomass under mild conditions, so it is highly expected in biomass fractionation to improve the utilization efficiency. In this study, we investigated the effect of p-TsOH differentiated fractionation of poplar sawdust, eucalyptus sawdust, and rice straw below 100 °C. According to the experimental results, upon pretreatment by p-TsOH of the three kinds of raw biomass, most of the lignin and hemicellulose of poplar sawdust and eucalyptus sawdust were removed, whereas the cellulose was retained, but most of the hemicellulose and cellulose of rice straw were kept, whereas the lignin was removed at similar conditions. The structures and compositions of pretreatment residues, lignin, and hemicellulose extracted from raw biomass were characterized by XRD, FTIR, HSQC-NMR, XPS, and SEM. The differentiated fractionation mechanism of biomass was analyzed. A better recognition and understanding of the factors affecting biomatrix opening and fractionation will allow for the identification of new pretreatment strategies that improve biomass utilization and permit the rational enzymatic hydrolysis of cellulose.
Collapse
Affiliation(s)
- Shaohua Fang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiuli Xia
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hui Wang
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Na Liu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiaying He
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin Liu
- College
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410004, China
- Ministry
of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan
International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
Wang F, Liu B, Cao W, Liu L, Zeng F, Qin C, Liang C, Huang C, Yao S. Novel dual-action vanillic acid pretreatment for efficient hemicellulose separation with simultaneous inhibition of lignin condensation. BIORESOURCE TECHNOLOGY 2023; 385:129416. [PMID: 37390932 DOI: 10.1016/j.biortech.2023.129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Aromatic acids play a selective role in the separation of hemicellulose. Phenolic acids have demonstrated an inhibitory effect on lignin condensation. In the current study, vanillic acid (VA), which combines the characteristics of aromatic and phenolic acids, is used to separate eucalyptus. The efficient and selective separation of hemicellulose is achieved simultaneously at 170 °C, 8.0% VA concentration, and 80 min. The separation yield of xylose increased from 78.80% to 88.59% compared to acetic acid (AA) pretreatment. The separation yield of lignin decreased from 19.32% to 11.19%. In particular, the β-O-4 content of lignin increased by 5.78% after pretreatment. The results indicate that VA, as a "carbon positive ion scavenger", it preferentially reacts with the carbon-positive ion intermediate of lignin. Surprisingly, the inhibition of lignin condensation is achieved. This study provides a new starting point for the development of an efficient and sustainable commercial technology by organic acid pretreatment.
Collapse
Affiliation(s)
- Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Wenqing Cao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
11
|
Liang J, Liu B, Li X, Mo X, Qin C, Liang C, Huang C, Yao S. Simultaneous achievement of efficient hemicellulose separation and inhibition of lignin repolymerization using pyruvic acid treatment. BIORESOURCE TECHNOLOGY 2023; 384:129328. [PMID: 37329991 DOI: 10.1016/j.biortech.2023.129328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The efficiency of organic acid treatment in the conversion of lignocellulosic biomass fractions has been widely recognized. In this study, a novel green pyruvic acid (PA) treatment is proposed. The higher separation efficiency of eucalyptus hemicellulose was obtained at 4.0% PA and 150 °C. The hemicellulose separation yield was increased from 71.71 to 88.09% compared to glycolic acid (GA) treatment. In addition, the treatment time was significantly reduced from 180 to 40 min. The proportion of cellulose in the solid increased after PA treatment. However, the accompanying separation of lignin was not effectively controlled. Fortunately, a six-membered ring structure was formed on the diol structure of the lignin β-O-4 side chain. Fewer lignin-condensed structures were observed. High-value lignin rich in phenol hydroxyl groups were obtained. It provides a green path for the simultaneous achievement of efficient hemicellulose separation and inhibition of lignin repolymerization using organic acid treatment.
Collapse
Affiliation(s)
- Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiangyu Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaorong Mo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
12
|
Wang M, Zhan Y, Zhao J, Li Z. Pretreatment of moso bamboo with p-toluenesulfonic acid for the recovery and depolymerization of hemicellulose. BIORESOURCE TECHNOLOGY 2023; 378:129006. [PMID: 37011848 DOI: 10.1016/j.biortech.2023.129006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Bamboo and its mechanical processing residues have broad prospects for high value-added utilization. In this research, p-toluenesulfonic acid was used for the pretreatment of bamboo to investigate the effects of extraction and depolymerization of hemicellulose. The response and behavior of changes of cell-wall chemical components were investigated after different solvent concentration, time, and temperature pretreatment. Results indicated that the maximum extraction yield of hemicellulose was 95.16 % with 5 % p-toluenesulfonic acid at 140 °C for 30 min. The depolymerized components of hemicellulose in the filtrate were mainly xylose and xylooligosaccharide, with xylobiose accounting for 30.77 %. The extraction of xylose from the filtrate reached a maximum of 90.16 % with 5 % p-toluenesulfonic acid at 150 °C for 30 min pretreatment. This research provided a potential strategy for the industrial production of xylose and xylooligosaccharide from bamboo and for the future conversion and utilization.
Collapse
Affiliation(s)
- Meixin Wang
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Yawei Zhan
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jiayue Zhao
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
13
|
Hou Y, Deng B, Wang S, Ma Y, Long X, Wang F, Qin C, Liang C, Yao S. High-Strength, High-Water-Retention Hemicellulose-Based Hydrogel and Its Application in Urea Slow Release. Int J Mol Sci 2023; 24:ijms24119208. [PMID: 37298162 DOI: 10.3390/ijms24119208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The use of fertilizer is closely related to crop growth and environmental protection in agricultural production. It is of great significance to develop environmentally friendly and biodegradable bio-based slow-release fertilizers. In this work, porous hemicellulose-based hydrogels were created, which had excellent mechanical properties, water retention properties (the water retention ratio in soil was 93.8% after 5 d), antioxidant properties (76.76%), and UV resistance (92.2%). This improves the efficiency and potential of its application in soil. In addition, electrostatic interaction and coating with sodium alginate produced a stable core-shell structure. The slow release of urea was realized. The cumulative release ratio of urea after 12 h was 27.42% and 11.38%, and the release kinetic constants were 0.0973 and 0.0288, in aqueous solution and soil, respectively. The sustained release results demonstrated that urea diffusion in aqueous solution followed the Korsmeyer-Peppas model, indicating the Fick diffusion mechanism, whereas diffusion in soil adhered to the Higuchi model. The outcomes show that urea release ratio may be successfully slowed down by hemicellulose hydrogels with high water retention ability. This provides a new method for the application of lignocellulosic biomass in agricultural slow-release fertilizer.
Collapse
Affiliation(s)
- Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yun Ma
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Wang S, Liu B, Liang J, Wang F, Bao Y, Qin C, Liang C, Huang C, Yao S. Rapid and mild fractionation of hemicellulose through recyclable mandelic acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 382:129154. [PMID: 37172743 DOI: 10.1016/j.biortech.2023.129154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The development of organic acid pretreatments from biological sources is essential to facilitate the progress of green and sustainable chemistry. In this study, the effectiveness of mandelic acid pretreatment (MAP) was analyzed for eucalyptus hemicellulose separation. 83.66% of xylose was separated under optimal conditions (temperature: 150 °C; concentration: 6.0 wt%; time: 80 min). The hemicellulose separation selectivity is higher than acetic acid pretreatment (AAP). The stable and effective separation efficiency (56.55%) is observed even after six reuses of the hydrolysate. Higher thermal stability, larger crystallinity index and optimized surface element distribution in the samples were demonstrated by MAP. Lignin condensation is effectively inhibited through MAP, as determined from the structural of different lignin. In particular, the demethoxylation of lignin by MA was found. These results open up a new way to construct a novel organic acid pretreatment for separating hemicellulose with high efficiency.
Collapse
Affiliation(s)
- Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuqi Bao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
15
|
Li J, Liu B, Liu L, Luo Y, Zeng F, Qin C, Liang C, Huang C, Yao S. Pretreatment of poplar with eco-friendly levulinic acid to achieve efficient utilization of biomass. BIORESOURCE TECHNOLOGY 2023; 376:128855. [PMID: 36898555 DOI: 10.1016/j.biortech.2023.128855] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Organic acid pretreatment is an effective method for green separation of lignocellulosic biomass. However, repolymerization of lignin seriously affects the dissolution of hemicellulose and the conversion of cellulose during organic acid pretreatment. Therefore, a new organic acid pretreatment, levulinic acid (Lev) pretreatment, was studied for the deconstruction of lignocellulosic biomass without adding additional additives. The preferred separation of hemicellulose was realized at Lev concentration 7.0%, temperature 170 °C, and time 100 min. The separation of hemicellulose increased from 58.38% to 82.05% compared with acetic acid pretreatment. It was found that the repolymerization of lignin was effectively inhibited in the efficient separation of hemicellulose. This was attributed to the fact that γ-valerolactone (GVL) is a good green scavenger of lignin fragments. The lignin fragments in the hydrolysate were effectively dissolved. The results provided theoretical support for creating green and efficient organic acid pretreatment and effectively inhibiting lignin repolymerization.
Collapse
Affiliation(s)
- Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
16
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
17
|
Lyu Y, Ji XX, Tian Z, Ji H, Zhang F, Dai L, Xie H, Si C. A cascade valorization of Kenaf stalk for the preparation of lignin sunscreens and papermaking. Int J Biol Macromol 2023; 230:123122. [PMID: 36603721 DOI: 10.1016/j.ijbiomac.2022.123122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Lignin has been regarded as a potential natural sun screening agent. However, the dark color of traditional industrial lignin hinders its application in the field of skincare. In this study, a green and facile approach was developed to extract light-colored lignin. p-Toluenesulfonic acid (p-TsOH) was used to separate lignin and fibers from Kenaf stalks. During the isolation of lignin, formaldehyde was added to preserve the β-O-4 bonds of lignins in the form of stable acetals. The obtained lignin was further employed to prepare nanoparticles (LNPs) as sunscreen additives. After adding 4 wt% LNPs, the SPF values of the cream increased from 7.05 to 27.84. The residual fibers from the Kenaf stalks can be utilized for papermaking as the raw materials. by mixing them with softwood pulp to reduce the consumption of commercial pulp. With the addition of 5 wt% residual fibers in commercial softwood pulp, the produced paper showed better mechanical properties. The ring crush strength index and tear index of the samples increased from 2.49 N·m/g and 4.63 mN·m2/g to 2.62 N·m/g and 4.75 mN·m2/g, respectively. This study paved a way for the comprehensive utilization of Kenaf stalks towards not only papermaking but also daily chemical products.
Collapse
Affiliation(s)
- Yingren Lyu
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China
| | - Xing-Xiang Ji
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China
| | - Zhongjian Tian
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China; Shandong Huatai Paper Co., Ltd, Dongying, Shandong 257335, China.
| | - Hairui Ji
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd, Dongying, Shandong 257335, China
| | - Lin Dai
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxiang Xie
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Bio-based Materials and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Huang H, Li Z, Ma Y, Yao M, Yao S, Zhang Z, Qin C. High-performance arabinoglucuronoxylan-based biosurfactants for oily sludge separation. Carbohydr Polym 2023; 303:120461. [PMID: 36657858 DOI: 10.1016/j.carbpol.2022.120461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Arabinoglucuronoxylan (AGX), an important carbohydrate polymer in lignocellulosic biomass, contains many functional groups. It has excellent amphiphilic modification properties and has potential application in the separation of oily sludge. In this study, a simple strategy for producing high-performance AGX-based biosurfactants was studied and the raw AGX was extracted from bamboo by hydrothermal treatment. AGX-based biosurfactants with amphiphilic structure were produced by AGX and dodecanal succinic anhydride (DDSA) using rapid homogeneous esterification reactions in deep eutectic solvents (DES). This resulted in a significant reduction in the surface tension of the water from 72.32 to 29.76 mN·m-1. These parameters are similar to those achieved using sodium dodecyl sulfate (SDS), a widely employed synthetic surfactant. Other physicochemical properties, including foamability, emulsification activity, stability, solubilization, and detergency were significantly improved compared to the unmodified AGX, demonstrate that AGX-based biosurfactants are promising detergents for oily sludge remediation and oil recovery. The results provide a new pathway for high value utilization of arabinoglucuronoxylan.
Collapse
Affiliation(s)
- Haibo Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhihan Li
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yun Ma
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Mingzhu Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Zhiwei Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
19
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
20
|
Li Y, Yao M, Luo Y, Li J, Wang Z, Liang C, Qin C, Huang C, Yao S. Polydopamine-Reinforced Hemicellulose-Based Multifunctional Flexible Hydrogels for Human Movement Sensing and Self-Powered Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5883-5896. [PMID: 36689627 DOI: 10.1021/acsami.2c19949] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The preparation of bio-based hydrogels with excellent mechanical properties, stable electrochemical properties, and self-adhesive properties remains a challenge. In this study, nano-polydopamine-reinforced hemicellulose-based hydrogels with typical multistage pore structures were prepared. The nanocomposite hydrogels exhibit stable mechanical properties and show no significant crushing phenomenon after 1000 cycles of cyclic compression. Its ultimate tensile strain was 101%, which is significantly higher than that of native skin. The shear adhesion strength of the hydrogel to skin tissue reaches 7.52 kPa, which is better than fibrin glue (Greenplast) (5 kPa), and the excellent adhesion property prolongs the service time of the hydrogel in biomedicine applications. The impedance of the hydrogel was reduced and the electrical conductivity was increased with the addition of nano-polydopamine. The prepared nanocomposite hydrogel can detect various body movements (even throat vibrations) in real time as a motion sensor while being able to rapidly load cationic drugs and facilitate transdermal introduction of electrically stimulated drug ions as a drug patch. It provides theoretical support for the fabrication of hemicellulose-based hydrogels with excellent properties through molecular design and nanoparticle reinforcement. This has important implications for the development of next-generation flexible materials suitable for health monitoring and self-administration.
Collapse
Affiliation(s)
- Yan Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Mingzhu Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Zengling Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning530004, PR China
| |
Collapse
|
21
|
Zhao J, Ren Y, Xie Y, Wang H, Wang T, Tang W, Jin Z, Ling Z, Yong Q. Allomorphic regulation of bamboo cellulose by mild alkaline peroxide for holocellulose nanofibrils production. Int J Biol Macromol 2022; 223:49-56. [PMID: 36349657 DOI: 10.1016/j.ijbiomac.2022.10.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The exploration of sustainable lignocellulosic nanomaterials with unique properties and applicable functions is receiving growing interest. In this work, holocellulose nanofibrils (HCNFs) were prepared from moso bamboo using mild alkaline peroxide bleaching method (MAPB) followed by mechanical nanofibrillation. MAPB was proved to effectively remove lignin and retain hemicellulose. Meanwhile, partial allomorphic changes from cellulose I to cellulose II were revealed together with varying degrees of crystallinity. Thermogravimetric analysis (TGA) experiment showed an increasing thermal stability trend due to more allomorphic changes into anti-parallel cellulose II. Well-dispersed HCNFs suspensions were successfully prepared by homogenization and HCNFs films with high transparency and flexibility were fabricated. The films reached the maximum tensile strength of 55.8 MPa and tensile strain of 1.55 % along with a calculated toughness of 25 MJ/m3. Moreover, the prepared materials are biocompatible and completely non-toxic, which will theoretically support the application of HCNFs materials in fields of biology, medicine and food industry.
Collapse
Affiliation(s)
- Jinyi Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hanhua Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Jin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Zhao J, Han J, Chen Z, Wang X, Ye X, Li H, Yao S, Wang S, Qin C, Liang C. Structural evolution of lignin after selective oxidation of lignin-carbohydrate complex by chlorine dioxide. Int J Biol Macromol 2022; 223:273-280. [PMID: 36347375 DOI: 10.1016/j.ijbiomac.2022.10.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Lignin-carbohydrate complexes (LCCs) are important from the perspective of the anti-depolymerization barrier of lignocellulosic biomass, as it limits the high-value utilization of lignocellulosic biomass resources. In this study, the unit structure of lignin in the LCC has been investigated in depth. Oxidation of a selective lignin unit by chlorine dioxide revealed that the LCC structures are enriched with xylanase-macroporous resins, and the structure that was not oxidized in LCC was also identified. At a chlorine dioxide concentration of 90.93 mg/L, 1 g of LCC lignin is oxidized by 0.7 g chlorine dioxide. The purified residual hemicellulose lignin was mainly H-type. The β-O-4' signal was the strongest for the bond between lignin and carbohydrates. Therefore, it is speculated that most of the residual lignin in bamboo-alkali hemicellulose exists in the form of non-phenolic structural units. This study provides a reference for further studies on the specific structures of LCC.
Collapse
Affiliation(s)
- Jinwei Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jinzhi Han
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhaoxia Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xin Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xuan Ye
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Haoyang Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
23
|
Liu Y, Deng B, Liang J, Li J, Liu B, Wang F, Qin C, Yao S. Effects of the Preferential Oxidation of Phenolic Lignin Using Chlorine Dioxide on Pulp Bleaching Efficiency. Int J Mol Sci 2022; 23:13310. [PMID: 36362097 PMCID: PMC9654181 DOI: 10.3390/ijms232113310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 07/30/2023] Open
Abstract
Chlorine dioxide is widely used for pulp bleaching because of its high delignification selectivity. However, efficient and clean chlorine dioxide bleaching is limited by the complexity of the lignin structure. Herein, the oxidation reactions of phenolic (vanillyl alcohol) and non-phenolic (veratryl alcohol) lignin model species were modulated using chlorine dioxide. The effects of chlorine dioxide concentration, reaction temperature, and reaction time on the consumption rate of the model species were also investigated. The optimal consumption rate for the phenolic species was obtained at a chlorine dioxide concentration of 30 mmol·L-1, a reaction temperature of 40 °C, and a reaction time of 10 min, resulting in the consumption of 96.3% of vanillyl alcohol. Its consumption remained essentially unchanged compared with that of traditional chlorine dioxide oxidation. However, the consumption rate of veratryl alcohol was significantly reduced from 78.0% to 17.3%. Additionally, the production of chlorobenzene via the chlorine dioxide oxidation of veratryl alcohol was inhibited. The structural changes in lignin before and after different treatments were analyzed. The overall structure of lignin remained stable during the optimization of the chlorine dioxide oxidation treatment. The signal intensities of several phenolic units were reduced. The effects of the selective oxidation of lignin by chlorine dioxide on the pulp properties were analyzed. Pulp viscosity significantly increased owing to the preferential oxidation of phenolic lignin by chlorine dioxide. The pollution load of bleached effluent was considerably reduced at similar pulp brightness levels. This study provides a new approach to chlorine dioxide bleaching. An efficient and clean bleaching process of the pulp was developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
24
|
Peng M, Zhu J, Luo Y, Li T, Xia X, Qin C, Liang C, Bian H, Yao S. Enhancement of separation selectivity of hemicellulose from bamboo using freeze-thaw-assisted p-toluenesulfonic acid treatment at low acid concentration and high temperature. BIORESOURCE TECHNOLOGY 2022; 363:127879. [PMID: 36058537 DOI: 10.1016/j.biortech.2022.127879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The cellulose-rich residual solids are obtained with p-toluenesulfonic acid (p-TsOH) treatment. However, better fractionation of hemicellulose and separation is difficult to obtain during treatment. This study aims at investigating the separation selectivity of bamboo hemicellulose using freeze-thaw-assisted p-TsOH (F/p-TsOH) treatment. The desired separation effect was achieved at freezing temperature -40 °C, freezing time 20 h, p-TsOH concentration 3.0 %, treatment temperature 130 °C and time 80 min. 93.26 % hemicellulose separation was found, which was 32.88 % higher than that of conventional p-TsOH treatment. Furthermore, the separation yield of lignin decreased significantly from 69.29 % to 13.98 %. The distinct lignin characteristic absorption peaks were found, while that of hemicellulose was difficult to observe. The fiber crystallinity index increased from 50.42 to 56.55 %. Furthermore, greater selectivity for hemicellulose separation was achieved. The results provide a new research thinking for efficient fractionation of lignocellulosic biomass by organic acid treatment.
Collapse
Affiliation(s)
- Meijiao Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Tao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xuelian Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
25
|
Bao Y, Zhu J, Zeng F, Li J, Wang S, Qin C, Liang C, Huang C, Yao S. Superior separation of hemicellulose-derived sugars from eucalyptus with tropic acid pretreatment. BIORESOURCE TECHNOLOGY 2022; 364:128082. [PMID: 36216284 DOI: 10.1016/j.biortech.2022.128082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Organic acid pretreatments can efficiently separate biomass-based hemicellulose and selectively produce hemicellulose-derived sugars. In this study, hemicellulose is separation as xylose, oligosaccharides in the tropic acid-catalyzed hydrothermal pretreatment of eucalyptus. The maximum yield of hemicellulose-derived sugars (85.78 %) with 71.25 % xylose selectivity (based on the total xylose in raw material) was achieved in the hydrolysate under optimal conditions (5 % TA, 160 ℃, 80 min). The yield of hemicellulose-derived sugar and the separation yield of hemicellulose increased by 11.06 % and 11.45 % compared with glycolic acid pretreatment in the similar severity factor. The separation yield of cellulose and lignin was decreased by 4.23 % and 0.98 %, respectively. This resulted in residual solids with higher biological stability (higher fiber crystallinity index, higher thermal stability, and higher lignin content). Therefore, higher hemicellulose separation selectivity and rich hemicellulose-derived sugars were obtained using TA pretreatment. The work would bring up a new method for biomass refining.
Collapse
Affiliation(s)
- Yuqi Bao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
26
|
Zeng F, Wang S, Liang J, Cao L, Liu X, Qin C, Liang C, Si C, Yu Z, Yao S. High-efficiency separation of hemicellulose from bamboo by one-step freeze-thaw-assisted alkali treatment. BIORESOURCE TECHNOLOGY 2022; 361:127735. [PMID: 35934248 DOI: 10.1016/j.biortech.2022.127735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The selectivity of alkali treatment (AT) for hemicellulose separation is reduced due to the alkali solubility of lignin. It was improved using freeze-thaw-assisted alkaline treatment (FT/AT). In this study, bamboo hemicellulose was separated via a one-step freeze-thaw-assisted alkali treatment (OFT/AT). The effects of freezing temperature, freezing time, alkali concentration, and treatment time on bamboo components were studied. The separation yield of hemicellulose was 73.26%, compared to 64.00% using conventional FT/AT. The separation of lignin and cellulose was inhibited as alkali concentration decreased from 7.0% to 5.0%. The extraction yield of hemicellulose increased from 46.35% to 56.12%. Structural analysis of extracted hemicellulose revealed the effective inhibition of the breakage of the xylose backbone and arabinose side chain of hemicellulose. This indicated that the molecular structure of extracted hemicellulose was relatively complete. It provides theoretical support for the efficient separation of hemicellulose by AT.
Collapse
Affiliation(s)
- Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Liming Cao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaoxu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
27
|
Liu B, Liu L, Deng B, Huang C, Zhu J, Liang L, He X, Wei Y, Qin C, Liang C, Liu S, Yao S. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int J Biol Macromol 2022; 222:1400-1413. [PMID: 36195224 DOI: 10.1016/j.ijbiomac.2022.09.270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
As a clean and efficient method of lignocellulosic biomass separation, organic acid pretreatment has attracted extensive research. Hemicellulose or lignin is selectively isolated and the cellulose structure is preserved. Effective fractionation of lignocellulosic biomass is achieved. The separation characteristics of hemicellulose or lignin by different organic acids were summarized. The organic acids of hemicellulose were separated into hydrogen ionized, autocatalytic and α-hydroxy acids according to the separation mechanism. The separation of lignin depends on the dissolution mechanism and spatial effect of organic acids. In addition, the challenges and prospects of organic acid pretreatment were analyzed. The separation of hemicellulose and enzymatic hydrolysis of cellulose were significantly affected by the polycondensation of lignin, which is effectively inhibited by the addition of green additives such as ketones or alcohols. Lignin separation was improved by developing a deep eutectic solvent treatment based on organic acid pretreatment. This work provides support for efficient cleaning of carbohydrate polymers and lignin to promote global carbon neutrality.
Collapse
Affiliation(s)
- Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Linlin Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xinliang He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuxin Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry,1 Forestry Drive, Syracuse, NY 13210, United States
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
28
|
Zhou X, Guan C, Xu Y, Yang S, Huang C, Sha J, Dai H. Mechanistic insights into morphological and chemical changes during benzenesulfonic acid pretreatment and simultaneous saccharification and fermentation process for ethanol production. BIORESOURCE TECHNOLOGY 2022; 360:127586. [PMID: 35798163 DOI: 10.1016/j.biortech.2022.127586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The anatomical and histochemical characterization of pretreated substrates is essential for the further valorization of biomass during the biorefinery process. In this work, the benzenesulfonic acid (BA)-treated substrates were employed for simultaneous saccharification and fermentation (SSF) of ethanol for the first time. An ethanol yield of 50.36% was attained at 10% solids loading and 47.45 g/L of ethanol accumulated at 30 % solids loading. The dramatic improvements could result from the deconstruction of cell walls, which were evidenced by fluorescence microscope and confocal Raman microscopy spectra. Additionally, for a thorough comprehension of the inherent chemistry of lignin during the BA pretreatment, the changes in lignin structure features were identified for the first time by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). In summary, this study tried to probe the possibility of BA-treated Miscanthus for the SSF process and unveiled the mechanism of the efficient BA pretreatment.
Collapse
Affiliation(s)
- Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chunlong Guan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yexuan Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Yang
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jiulong Sha
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
29
|
Deng B, Luo Y, Peng M, Li T, Su J, Wang Y, Xia X, Feng C, Yao S. Kinetics of Lignin Separation during the Atmospheric Fractionation of Bagasse with p-Toluenesulfonic Acid. Int J Mol Sci 2022; 23:ijms23158743. [PMID: 35955877 PMCID: PMC9369161 DOI: 10.3390/ijms23158743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
As a green and efficient component separation technology, organic acid pretreatment has been widely studied in biomass refining. In particular, the efficient separation of lignin by p-toluenesulfonic acid (p-TsOH) pretreatment has been achieved. In this study, the mechanism of the atmospheric separation of bagasse lignin with p-TsOH was investigated. The separation kinetics of lignin was analyzed. A non-simple linear relationship was found between the separation yield of lignin and the concentration of p-TsOH, the temperature and the stirring speed. The shrinking nucleus model for the separation of lignin was established based on the introduction of mass transfer and diffusion factors. A general model of the total delignification rate was obtained. The results showed that the process of lignin separation occurred into two phases, i.e., a fast stage and a slow stage. The results provide a theoretical basis for the efficient separation of lignin by p-TsOH pretreatment.
Collapse
|
30
|
Deng B, Hou Y, Wang F, Bao Y, Zeng F, Qin C, Liang C, Huang C, Ma J, Yao S. Highly selective separation of eucalyptus hemicellulose by salicylic acid treatment with both aromatic and hydroxy acids. BIORESOURCE TECHNOLOGY 2022; 355:127304. [PMID: 35562023 DOI: 10.1016/j.biortech.2022.127304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Aromatic and hydroxyl acid treatments demonstrate their respective characteristics for the separation of lignocellulosic biomass. In this study, the effect of salicylic acid (SA-A) treatment on the separation of eucalyptus components with both aromatic and hydroxyl acid properties was analyzed. The optimal conditions were SA-A concentration 9.0%, reaction temperature 140 °C and time 75 min. The separation yield of xylose was 85.93%. The separation of cellulose and lignin was inhibited by SA-A treatment in contrast to the separation by glycolic acid and p-toluenesulfonic acid treatment. Moreover, SA-A treatment resulted in a larger fiber crystallinity index and higher thermal stability. The SA-A-treated samples contained lignin that was rich in β-O-4 and hydroxyl groups. The degradation and condensation of lignin was inhibited. The selectivity of aromatic acids for separating hemicellulose and protecting the lignin structure using hydroxy acids was demonstrated. Thus, new and efficient organic acid treatments can be developed.
Collapse
Affiliation(s)
- Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuqi Bao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiliang Ma
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
31
|
Zeng H, Liu B, Li J, Li M, Peng M, Qin C, Liang C, Huang C, Li X, Yao S. Efficient separation of bagasse lignin by freeze-thaw-assisted p-toluenesulfonic acid pretreatment. BIORESOURCE TECHNOLOGY 2022; 351:126951. [PMID: 35257885 DOI: 10.1016/j.biortech.2022.126951] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Lignin separation is an important procedure that benefits multiple industries and in particular biomass transformation efforts. In this study, bagasse lignin was separated by freeze-thaw-assisted p-toluenesulfonic acid (p-TsOH) pretreatment. The optimal conditions were freezing temperature -60 °C, freezing time 8.0 h, thawing temperature 15 °C, p-TsOH concentration 60%, pretreatment temperature 70 °C, and time 20 min. Lower acid concentrations and temperatures were used compared with traditional p-TsOH pretreatment. The efficiency and selectivity of lignin separation were improved. It was attributed to freeze-thawing, which provided a more efficient physical channel for the effective penetration of p-TsOH. The separation, extraction and purity of lignin were improved to 89.76%, 78.22% and 77.89%, respectively. High separation, high extraction, high purity and large molecular weight lignin samples were obtained. In addition, the recovery and reuse of p-TsOH was enhanced. This provided a new method for the efficient and clean separation of lignin.
Collapse
Affiliation(s)
- Huali Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Mei Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Meijiao Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
32
|
Zhu J, Bao Y, Lv L, Zeng F, Du D, Liang C, Ge J, Wang S, Yao S. Optimization of Demineralization and Pyrolysis Performance of Eucalyptus Hydrothermal Pretreatment. Polymers (Basel) 2022; 14:polym14071333. [PMID: 35406206 PMCID: PMC9002365 DOI: 10.3390/polym14071333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
The preparation of bio-oil through biomass pyrolysis is promoted by different demineralization processes to remove alkali and alkaline earth metal elements (AAEMs). In this study, the hydrothermal pretreatment demineralization was optimized by the response surface method. The pretreatment temperature, time and pH were the response elements, and the total dissolution rates of potassium, calcium and magnesium were the response values. The interactions of response factors for AAEMs removal were analyzed. The interaction between temperature and time was significant. The optimal AAEMs removal process was obtained with a reaction temperature of 172.98 °C, time of 59.77 min, and pH of 3.01. The optimal dissolution rate of AAEMs was 47.59%. The thermal stability of eucalyptus with and without pretreatment was analyzed by TGA. The hydrothermal pretreatment samples exhibit higher thermostability. The composition and distribution of pyrolysis products of different samples were analyzed by Py-GC/MS. The results showed that the content of sugars and high-quality bio-oil (C6, C7, C8 and C9) were 60.74% and 80.99%, respectively, by hydrothermal pretreatment. These results show that the removal of AAEMs through hydrothermal pretreatment not only improves the yield of bio-oil, but also improves the quality of bio-oil and promotes an upgrade in the quality of bio-oil.
Collapse
|