1
|
Arshad T, Rafique MS, Bashir S, Hayat A, Murtaza MG, Muneeb A, Shahadat I, Nayab N. Abatement of Aerosols by Ionic Wind Extracted From Dielectric Barrier Discharge Plasma. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241262879. [PMID: 39055117 PMCID: PMC11271097 DOI: 10.1177/11786302241262879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
Lahore (Pakistan), being an industrial city, has high emission of aerosols that affects and contaminates the air quality. Therefore, the abatement/inactivation of aerosols is necessary to restrict their infectious activities. In this project, ionic wind isolated from dielectric barrier discharge plasma (DBD plasma) has been utilized to abate the aerosols trapped in the Surgical Mask and KN95 Respirator. To infer the chemical and elemental detection of ambient aerosols, FTIR and LIBS have been employed. "From the results, it is noteworthy that abatement/removal of aerosols has been successfully carried out by the ionic wind irradiation and highlights the potential of DBD plasma technology in removing the aerosols pollution."
Collapse
Affiliation(s)
- Tehreem Arshad
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | | | - Shazia Bashir
- Department of CASP, Government College University Lahore, Pakistan
| | - Asma Hayat
- Department of CASP, Government College University Lahore, Pakistan
| | | | - Abdul Muneeb
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Imran Shahadat
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Nabiha Nayab
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
2
|
Li Q, Gao R, Li Y, Fan B, Ma C, He YC. Improved biotransformation of lignin-valorized vanillin into vanillylamine in a sustainable bioreaction medium. BIORESOURCE TECHNOLOGY 2023; 384:129292. [PMID: 37295479 DOI: 10.1016/j.biortech.2023.129292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Lignin is a critical biopolymer for creating a large number of highly valuable biobased compounds. Vanillin, one of lignin-derived aromatics, can be used to synthesize vanillylamine that is a key fine chemical and pharmaceutical intermediate. To produce vanillylamine, a productive whole-cell-catalyzed biotransformation of vanillin was developed in deep eutectic solvent - surfactant - H2O media. One newly created recombinant E. coli 30CA cells expressing ω-transaminase and L-alanine dehydrogenase was employed to transform 50 mM and 60 mM vanillin into vanillylamine in the yield of 82.2% and 8.5% under 40 °C, respectively. The biotransamination efficiency was enhanced by introducing surfactant PEG-2000 (40 mM) and deep eutectic solvent ChCl:LA (5.0 wt%, pH 8.0), and the highest vanillylamine yield reached 90.0% from 60 mM vanillin. Building an effective bioprocess was utilized for transamination of lignin-derived vanillin to vanillylamine with newly created bacteria in an eco-friendly medium, which had potential application for valorization of lignin to value-added compounds.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Ruiying Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yucheng Li
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Bo Fan
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
3
|
Rodriguez Y, Guerra R, Vizuete K, Debut A, Streitwieser DA, Mora JR, Ponce S. Kinetic study of the catalytic cracking of waste motor oil using biomass-derived heterogeneous catalysts. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:46-54. [PMID: 37245395 DOI: 10.1016/j.wasman.2023.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Herein, biochar from biomass residues is demonstrated as active materials for the catalytic cracking of waste motor oil into diesel-like fuels. Above all, alkali-treated rice husk biochar showed great activity with a 250% increase in the kinetic constant compared to the thermal cracking. It also showed better activity than synthetic materials, as previously reported. Moreover, much lower activation energy (185.77to293.48kJmol) for the cracking process was also obtained. According to materials characterization, the catalytic activity was more related to the nature of the biochar's surface than its specific surface area. Finally, liquid products complied with all the physical properties defined by international standards for diesel-like fuels, with the presence of hydrocarbons chains between C10-C27 similar to the ones obtained in commercial diesel.
Collapse
Affiliation(s)
- Yuliana Rodriguez
- Universidad San Francisco de Quito USFQ, Department of Chemical Engineering, Diego de Robles s/n y Av. Interoceánica, Quito EC 170157, Ecuador
| | - Renato Guerra
- Universidad San Francisco de Quito USFQ, Department of Chemical Engineering, Diego de Robles s/n y Av. Interoceánica, Quito EC 170157, Ecuador
| | - Karla Vizuete
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Sangolquí, P.O, Box 171-5-231B, Ecuador
| | - Alexis Debut
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Sangolquí, P.O, Box 171-5-231B, Ecuador
| | - Daniela Almeida Streitwieser
- Universidad San Francisco de Quito USFQ, Department of Chemical Engineering, Diego de Robles s/n y Av. Interoceánica, Quito EC 170157, Ecuador; Reutlingen University, Faculty for Applied Chemistry, 72762 Reutlingen, Germany
| | - Jose R Mora
- Universidad San Francisco de Quito USFQ, Department of Chemical Engineering, Diego de Robles s/n y Av. Interoceánica, Quito EC 170157, Ecuador
| | - Sebastian Ponce
- Universidad San Francisco de Quito USFQ, Department of Chemical Engineering, Diego de Robles s/n y Av. Interoceánica, Quito EC 170157, Ecuador.
| |
Collapse
|
4
|
Rai PK, Sonne C, Song H, Kim KH. Plastic wastes in the time of COVID-19: Their environmental hazards and implications for sustainable energy resilience and circular bio-economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159880. [PMID: 36328266 PMCID: PMC9618453 DOI: 10.1016/j.scitotenv.2022.159880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/06/2023]
Abstract
The global scope of pollution from plastic waste is a well-known phenomenon associated with trade, mass consumption, and disposal of plastic products (e.g., personal protective equipment (PPE), viral test kits, and vacuum-packaged food). Recently, the scale of the problem has been exacerbated by increases in indoor livelihood activities during lockdowns imposed in response to the coronavirus disease 2019 (COVID-19) pandemic. The present study describes the effects of increased plastic waste on environmental footprint and human health. Further, the technological/regulatory options and life cycle assessment (LCA) approach for sustainable plastic waste management are critically dealt in terms of their implications on energy resilience and circular economy. The abrupt increase in health-care waste during pandemic has been worsening environmental quality to undermine the sustainability in general. In addition, weathered plastic particles from PPE along with microplastics (MPs) and nanoplastics (NPs) can all adsorb chemical and microbial contaminants to pose a risk to ecosystems, biota, occupational safety, and human health. PPE-derived plastic pollution during the pandemic also jeopardizes sustainable development goals, energy resilience, and climate control measures. However, it is revealed that the pandemic can be regarded as an opportunity for explicit LCA to better address the problems associated with environmental footprints of plastic waste and to focus on sustainable management technologies such as circular bio-economies, biorefineries, and thermal gasification. Future researches in the energy-efficient clean technologies and circular bio-economies (or biorefineries) in concert with a "nexus" framework are expected to help reduce plastic waste into desirable directions.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - C Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - H Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Pourebrahimi S. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158396. [PMID: 36055514 PMCID: PMC9424124 DOI: 10.1016/j.scitotenv.2022.158396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/06/2023]
Abstract
Billions of disposable face masks (i.e., single-use masks) are used and discarded worldwide monthly due to the COVID-19 outbreak. The immethodical disposal of these polymer-based wastes containing non-biodegradable constituents (e.g., polypropylene) has provoked marked and severe damage to the ecosystem. Meanwhile, their ever-growing usage significantly strains the present-day waste management measures such as landfilling and incineration, resulting in large quantities of used face-covering masks landing in the environment as importunate contaminants. Hence, alternative waste management strategies are crucially demanded to decrease the negative impacts of face mask contamination. In this venue, developing high-yield, effective, and green routes toward recycling or upcycling face mask wastes (FMWs) into value-added materials is of great importance. While existing recycling processes assist the traditional waste management, they typically end up in materials with downgraded physicochemical, structural, mechanical, and thermal characteristics with reduced values. Therefore, pursuing potential economic upcycling processes would be more beneficial than waste disposal and/or recycling processes. This paper reviews recent advances in the FMWs upcycling methods. In particular, we focus on producing value-added materials via various waste conversion methods, including carbonization (i.e., extreme pyrolysis), pyrolysis (i.e., rapid carbonization), catalytic conversion, chemical treatment, and mechanical reprocessing. Generally, the upcycling methods are promising, firming the vital role of managing FMWs' fate and shedding light on the road of state-of-the-art materials design and synthesis.
Collapse
Affiliation(s)
- Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada.
| |
Collapse
|