1
|
Yang Y, Li J, Kong Z, Ma J, Shen Y, Ma H, Yan Y, Dan K, Chai H. A self-sustaining effect induced by iron sulfide generation and reuse in pyrite-woodchip mixotrophic bioretention systems: An experimental and modeling study. WATER RESEARCH 2024; 265:122311. [PMID: 39197390 DOI: 10.1016/j.watres.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Dual electron donor bioretention systems have emerged as a popular strategy to enhance dissolved nitrogen removal from stormwater runoff. Pyrite-woodchip mixotrophic bioretention systems showed a promoted and stabilized removal of dissolved nutrients under complex rainfall conditions, but the sulfate reduction process that can induce iron sulfide generation and reuse was overlooked. In this study, experiments and models were applied to investigate the effects of filler configuration and dissolved organic carbon (DOC) dissolution rate on treatment performance and iron sulfide generation in pyrite-woodchip bioretention systems. Key parameters govern that DOC dissolution and microbe-mediated processes were obtained by experiments. The water quality models that integrate one-dimensional constant flow, sorption and microbial transformation kinetics were used to predict the performance of bioretention systems. Results showed that the mixotrophic bioretention system with woodchip mixed in the vadose zone and pyrite in the saturated zone achieves a better performance in both nitrogen removal efficiency and by-product control. Comparably, woodchip and pyrite mixed in the saturated zone could encounter a high secondary pollution risk. The sensitivity coefficients of oxic/anoxic DOC dissolution rates to total nitrogen removal are 0.36 and -2.43 respectively. Iron sulfide generation was affected by DOC distribution and the competition between heterotrophic denitrifiers, autotrophic denitrifiers, and sulfate-reducing bacteria (SRB). DOC accumulation has an antagonistic effect on iron production and sulfate reduction. Extra DOC accumulation favors sulfate reduction while high DOC concentration inhibits pyrite-based denitrification and reduces Fe(III) production. The recycling of iron sulfide can improve the robustness and sustainability of bioretention systems.
Collapse
Affiliation(s)
- Yan Yang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; SPIC Yuanda Environmental Protection Engineering Co., Ltd., Chongqing, 401122, China
| | - Jixing Li
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zheng Kong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingchen Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; China Southwest Architecture Design Institute, Chengdu, 610042, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi Yan
- Chongqing Architectural Design Institute Co., Ltd., Chongqing, 400015, China
| | - Kang Dan
- SPIC Yuanda Environmental Protection Engineering Co., Ltd., Chongqing, 401122, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
2
|
Fang F, Yang J, Chen LL, Xu RZ, Luo JY, Ni BJ, Cao JS. Mixotrophic denitrification of waste activated sludge fermentation liquid as an alternative carbon source for nitrogen removal: Reducing N 2O emissions and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121348. [PMID: 38824891 DOI: 10.1016/j.jenvman.2024.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jie Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ling-Long Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Zhou T, Hu W, Lai DYF, Yin G, Ren D, Guo Z, Zheng Y, Wang J. Interaction of reed litter and biochar presences on performances of constructed wetlands. WATER RESEARCH 2024; 254:121387. [PMID: 38457943 DOI: 10.1016/j.watres.2024.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Constructed wetlands (CWs) are frequently used for effective biological treatment of nitrogen-rich wastewater with external carbon source addition; however, these approaches often neglect the interaction between plant litter and biochar in biochar-amended CW environments. To address this, we conducted a comprehensive study to assess the impacts of single or combined addition of common reed litter and reed biochar (pyrolyzed at 300 and 500 °C) on nitrogen removal, greenhouse gas emission, dissolved organic matter (DOM) dynamics, and microbial activity. The results showed that combined addition of reed litter and biochar to CWs significantly improved nitrate and total nitrogen removal compared with biochar addition alone. Compared to those without reed litter addition, CWs with reed litter addition had more low-molecular-weight and less aromatic DOM and more protein-like fluorescent DOM, which favored the enrichment of bacteria associated with denitrification. The improved nitrogen removal could be attributed to increases in denitrifying microbes and the relative abundance of functional denitrification genes with litter addition. Moreover, the combined addition of reed litter and 300 °C-heated biochar significantly decreased nitrous oxide (30.7 %) and methane (43.9 %) compared to reed litter addition alone, while the combined addition of reed litter and 500 °C-heated biochar did not. This study demonstrated that the presences of reed litter and biochar in CWs could achieve both high microbial nitrogen removal and relatively low greenhouse gas emissions.
Collapse
Affiliation(s)
- Tongtong Zhou
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Weifeng Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Gege Yin
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zhilin Guo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Yu W, Zheng T, Guo B, Tao Y, Liu L, Yan N, Zheng X. Coupling of polyhydroxybutyrate and zero-valent iron for enhanced treatment of nitrate pollution within the Permeable Reactive Barrier and its downgradient aquifer. WATER RESEARCH 2024; 250:121060. [PMID: 38181646 DOI: 10.1016/j.watres.2023.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Permeable Reactive Barriers (PRBs) have been utilized for mitigating nitrate pollution in groundwater systems through the use of solid carbon and iron fillers that release diverse nutrients to enhance denitrification efficiency. We conduct laboratory column tests to evaluate the effectiveness of PRBs in remediating nitrate pollution both within the PRB and in the downgradient aquifer. We use an iron-carbon hydrogel (ICH) as PRB filler, which has different weight ratios of polyhydroxybutyrate (PHB) and microscale zero-valent iron (mZVI). Results reveal that denitrification in the downgradient aquifer accounts for at least 19.5 % to 32.5 % of the total nitrate removal. In the ICH, a higher ratio of PHB to mZVI leads to higher contribution of the downgradient aquifer to nitrate removal, while a lower ratio results in smaller contribution. Microbial community analysis further reveals that heterotrophic and mixotrophic bacteria dominate in the downgradient aquifer of the PRB, and their relative abundance increases with a higher ratio of PHB to mZVI in the ICH. Within the PRB, autotrophic and iron-reducing bacteria are more prevalent, and their abundance increases as the ratio of PHB to mZVI in the ICH decreases. These findings emphasize the downgradient aquifer's substantial role in nitrate removal, particularly driven by dissolved organic carbon provided by PHB. This research holds significant implications for nutrient waste management, including the prevention of secondary pollution, and the development of cost-effective PRBs.
Collapse
Affiliation(s)
- Wenhao Yu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA.
| | - Yiheng Tao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544, USA
| | - Lecheng Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Li J, Culver TB, Persaud PP, Hathaway JM. Developing nitrogen removal models for stormwater bioretention systems. WATER RESEARCH 2023; 243:120381. [PMID: 37517150 DOI: 10.1016/j.watres.2023.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Bioretention systems have the potential of simultaneous runoff volume reduction and nitrogen removal. Internal water storage (IWS) layers and real-time control (RTC) strategies may further improve performance of bioretention systems. However, optimizing the design of these systems is limited by the lack of effective models to simulate nitrogen transformations under the influences of IWS design and environment conditions including soil moisture and temperature. In this study, nitrogen removal models (NRMs) are developed with two complexity levels of nitrogen cycling: the Single Nitrogen Pool (SP) models and the more complex 3 Nitrogen Pool (3P) models. The 0-order kinetics, 1st order kinetics, and the Michaelis-Menten equations are applied to both SP and 3P models, creating six different NRMs. The Storm Water Management Model (SWMM), in combination with each NRM, is calibrated and validated with a lab dataset. Results show that 0-order kinetics are not suitable in simulating nitrogen removal or transformations in bioretention systems, while 1st order kinetics and Michaelis-Menten equation models have similar performances. The best performing NRM (referred to as 3P-m) can accurately predict nitrogen event mean concentrations in bioretention effluent for 20% more events when compared to SWMM. When only calibrated with soil moisture conditions in bioretention systems without internal storage layers, 3P-m was sufficiently adaptable to predict cumulative nitrogen mass removal rates from systems with IWS or RTC rules with less than ±7% absolute error, while the absolute error from SWMM prediction can reach -23%. In general, 3P models provide higher prediction accuracy and improved time series of biochemical reaction rates, while SP models improve prediction accuracy with less required user input for initial conditions.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States
| | - Teresa B Culver
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States.
| | - Padmini P Persaud
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, 851 Neyland Dr., Knoxville, TN, 37996, United States
| | - Jon M Hathaway
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, 851 Neyland Dr., Knoxville, TN, 37996, United States
| |
Collapse
|
6
|
Zhang J, Fan C, Zhao M, Wang Z, Jiang S, Jin Z, Bei K, Zheng X, Wu S, Lin P, Miu H. A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. CHEMOSPHERE 2023; 313:137474. [PMID: 36493890 DOI: 10.1016/j.chemosphere.2022.137474] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification is the most widely used method for nitrogen removal in water treatment. Compared with heterotrophic and autotrophic denitrification, mixotrophic denitrification is later studied and used. Because mixotrophic denitrification can overcome some shortcomings of heterotrophic and autotrophic denitrification, such as a high carbon source demand for heterotrophic denitrification and a long start-up time for autotrophic denitrification. It has attracted extensive attention of researchers and is increasingly used in biological nitrogen removal processes. However, so far, a comprehensive review is lacking. This paper aims to review the current research status of mixotrophic denitrification and provide guidance for future research in this field. It is shown that mixotrophic denitrification processes can be divided into three main kinds based on different kinds of electron donors, mainly including sulfur-, hydrogen-, and iron-based reducing substances. Among them, sulfur-based mixotrophic denitrification is the most widely studied. The most concerned influencing factors of mixotrophic denitrification processes are hydraulic retention times (HRT) and ratio of chemical oxygen demand (COD) to total inorganic nitrogen (C/N). The dominant functional bacteria of sulfur-based mixotrophic denitrification system are Thiobacillus, Azoarcus, Pseudomonas, and Thauera. At present, mixotrophic denitrification processes are mainly applied for nitrogen removal in drinking water, groundwater, and wastewater treatment. Finally, challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Jintao Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Chunzhen Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Zhiquan Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Zhan Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Ping Lin
- Wenzhou Drainage Co., Ltd, Wenzhou, Zhejiang, 325000, PR China
| | - Huanyi Miu
- Wenzhou Ecological Park Development and Construction Investment Group Co., Ltd, Wenzhou, Zhejiang, 325000, PR China
| |
Collapse
|
7
|
Bi Z, Zhang Q, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters. BIORESOURCE TECHNOLOGY 2022; 363:127890. [PMID: 36075347 DOI: 10.1016/j.biortech.2022.127890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|