1
|
Zang Y, Hang N, Sui J, Zhao W, Li S, Tao J, Zong S. Achieving "Pesticide-Pest Mutual Management" through pest-derived biochar. Talanta 2025; 293:128028. [PMID: 40158309 DOI: 10.1016/j.talanta.2025.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
This study proposes a novel "pesticide-pest mutual management" strategy, transforming the traditional unidirectional impact of pesticides on pests into a sustainable and interactive process. Using the Asian longhorned beetle (Anoplophora glabripennis, ALB) as a precursor, a series of nitrogen-rich biochars (ALB-BC) was synthesized to remove and detect insecticides used in ALB control from water. Among them, acid-modified ALB-BC (HBC 400) exhibited an exceptional adsorption capacity for thiacloprid, reaching 1591.06 mg g-1. Mechanistic studies revealed that Lewis acid-base interactions serve as the primary adsorption mechanism, underpinning ALB-BC's high affinity for thiacloprid. Additional mechanisms, including hydrogen bonding, π-π interactions, and pore filling, further enhanced adsorption performance. These interactions were attributed to the high concentrations of carbonyl and hydroxyl groups, as well as nitrogen species (e.g., pyridinic-N, pyrrolic-N) in ALB-BC, derived from the abundant peptide bonds and polysaccharide structures in ALB. Furthermore, ALB-BC effectively extracted and detected poorly water-soluble insecticides (e.g., cyhalothrin, cypermethrin, and fenitrothion) used in ALB control, alongside thiacloprid, achieving recoveries of 84 %-96 % and detection limits of 0.04-0.09 μg L-1. This study highlights the potential of utilizing forestry pest resources for sustainable applications and demonstrates promising prospects in environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Yuyue Zang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Na Hang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Jiale Sui
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wanning Zhao
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Songqing Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
He H, Liu XK, Zhao BY, Zhou LJ, Zhao X, Wang CX, Zhang JY, Zhang YF, Wang L. A new way to combine carboxymethyl cellulose with Fe: Application and mechanism analysis. Int J Biol Macromol 2025; 294:139402. [PMID: 39756739 DOI: 10.1016/j.ijbiomac.2024.139402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
A new, effective powdered adsorbent (CMCFe) for removing oxytetracycline (OTC) was synthesized successfully in an acidic environment using a thermal fusion technique. CMC-Fe underwent comprehensive SEM, EDS, FT-IR, XRD, XPS, TGA, and BET analyses before and after adsorbing OTC. These studies systematically examined preparation variables such as CMC and FeCl3 ratios, acetic acid quantity, reaction duration, and temperature. Batch adsorption experiments evaluated how well CMC-Fe absorbs OTC, with detailed analyses of adsorption mechanisms through kinetics, isotherms, and thermodynamic methods. Characterization analysis of CMC-Fe pre- and post-OTC adsorption confirmed its stability, high adsorption capacity, and the presence of OTC on its surface. Within 2 h, batch adsorption experiments demonstrated that CMC-Fe could adsorb up to 1005 mg·g-1 of OTC. Examination of kinetics, isotherms, and thermodynamics showed that OTC adsorption by CMC-Fe is a complex, multilayered, endothermic process where physical adsorption prominently contributes to OTC removal. Key factors driving the adsorption process include chelation involving Fe2+, Fe3+, and OTC, π-π stacking, pore filling, and strong electrostatic interactions. CMC-Fe exhibits exceptional adsorption capacity for OTC, demonstrating strong environmental adaptability and promising potential for pollutant removal in aquatic environments.
Collapse
Affiliation(s)
- Hao He
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Xiao-Kai Liu
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Bai-Yun Zhao
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Li-Juan Zhou
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Xuan Zhao
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Chen-Xu Wang
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Ji-Yuan Zhang
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Yuan-Fang Zhang
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China
| | - Li Wang
- School of Materials Science and Art and Design, Inner Mongolia Agricultural University, Hohhot 010018. China; Laboratory of Fibrosis and Energy Utilization of Shrubby Resources in Inner Mongolia Autonomous Region, China; National Forestry Grassland Engineering Technology Research Center for Efficient Development and Utilization of Sandy Shrubs, China.
| |
Collapse
|
3
|
Nguyen NT, Lin AB, Chang CT, Hong GB. Bimetallic Zinc-Iron-Modified Sugarcane Bagasse Biochar for Simultaneous Adsorption of Arsenic and Oxytetracycline from Wastewater. Molecules 2025; 30:572. [PMID: 39942676 PMCID: PMC11820934 DOI: 10.3390/molecules30030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Arsenic (As), a highly toxic and carcinogenic heavy metal, poses significant risks to soil and water quality, while oxytetracycline (OTC), a widely used antibiotic, contributes to environmental pollution due to excessive human usage. Addressing the coexistence of multiple pollutants in the environment, this study investigates the simultaneous adsorption of As(III) and OTC using a novel bimetallic zinc-iron-modified biochar (1Zn-1Fe-1SBC). The developed adsorbent demonstrates enhanced recovery, improved adsorption efficiency, and cost-effective operation. Characterization results revealed a high carbon-to-hydrogen ratio (C/H) and a specific surface area of 1137 m2 g-1 for 1Zn-1Fe-1SBC. Isotherm modeling indicated maximum adsorption capacities of 34.7 mg g-1 for As(III) and 172.4 mg g-1 for OTC. Thermodynamic analysis confirmed that the adsorption processes for both pollutants were spontaneous (ΔG < 0), endothermic (ΔH > 0), and driven by chemical adsorption (ΔH > 80 kJ mol-1), with increased system disorder (ΔS > 0). The adsorption mechanisms involved multiple interactions, including pore filling, hydrogen bonding, electrostatic attraction, complexation, and π-π interactions. These findings underscore the potential of 1Zn-1Fe-1SBC as a promising adsorbent for the remediation of wastewater containing coexisting pollutants.
Collapse
Affiliation(s)
- Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 106, Taiwan;
| | - An-Bang Lin
- Department of Environmental Engineering, National Ilan University, Yilan City 26047, Taiwan;
| | - Chang-Tang Chang
- Department of Environmental Engineering, National Ilan University, Yilan City 26047, Taiwan;
| | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 106, Taiwan;
| |
Collapse
|
4
|
Xu Z, Duan X, Chen Y, Chen D, Lu H, Zhan J, Ren X, Pan X. Great truths are always simple: A millimeter-sized macroscopic lanthanum-calcium dual crosslinked carboxymethyl chitosan aerogel bead as a promising adsorbent for scavenging oxytetracycline from wastewater. Int J Biol Macromol 2024; 278:134499. [PMID: 39217038 DOI: 10.1016/j.ijbiomac.2024.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Given their increasing environmental and health harms, it is crucial to develop green and sustainable techniques for scavenging antibiotics represented by oxytetracycline (OTC) from wastewater. In the present work, a structurally simple lanthanum-calcium dual crosslinked carboxymethyl chitosan (CMCS-La3+-Ca2+) aerogel was innovatively synthesized for adsorptive removal of OTC. It was found that CMCS and La3+ sites collaboratively participated in OTC elimination, and OTC removal peaked over the wide pH range of 4-7. The process of OTC sorption was better described by the pseudo-second-order kinetic model and Redlich-Peterson model, and the saturated uptake amount toward OTC was up to 580.91 mg/g at 303 K, which was comparable to the bulk of previous records. The as-fabricated composite also exerted exceptional capture capacity toward OTC in consecutive adsorption-desorption runs and high-salinity wastewater. Amazingly, its packed column continuously ran for over 60 h with a dynamic uptake amount of 215.21 mg/g until the adsorption was saturated, illustrating its great potential in scale-up applications. Mechanism studies demonstrated that multifarious spatially-isolated reactive sites of CMCS-La3+-Ca2+ cooperatively involved in OTC capture via multi-mechanisms, such as n-π EDA interaction, H-bonding, La3+-complexation, and cation-π bonding. All the above superiorities endow it as a promising adsorbent for OTC-containing wastewater decontamination.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Xingyu Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongshan Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| |
Collapse
|
5
|
Zhao Z, Li P, Zhang M, Feng W, Tang H, Zhang Z. Unlocking the potential of Chinese herbal medicine residue-derived biochar as an efficient adsorbent for high-performance tetracycline removal. ENVIRONMENTAL RESEARCH 2024; 252:118425. [PMID: 38325789 DOI: 10.1016/j.envres.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.
Collapse
Affiliation(s)
- Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Ma X, Li Y, Du Y, Chen S, Bai Y, Li L, Qi C, Wu P, Zhang S. In-situ synthesis of ZIF-8 on magnetic pineapple leaf biochar as an efficient and reusable adsorbent for methylene blue removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24113-24128. [PMID: 38436853 DOI: 10.1007/s11356-024-32700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The presence of organic dyes in aquatic systems poses a significant threat to ecosystems and human well-being. Due to recycling challenges, traditional commercial activated carbon is not cost-effective. To address this, an imidazolate acid zeolite framework-8 (ZIF-8)-modified magnetic adsorbent (ZMPLB-800) was synthesized through the in-situ formation of ZIF-8 and subsequent carbonization at 800 °C, using magnetic pineapple leaf biochar (MPLB) as a carrier. The porous structure of ZMPLB-800 facilitates the rapid passage of dye molecules, enhancing adsorption performance. ZMPLB-800 exhibited remarkable adsorption capacity for methylene blue (MB) across a pH range of 3-13, with a maximum adsorption capacity of 455.98 mg g-1. Adsorption kinetics and thermodynamics followed the pseudo-second-order kinetic model and Langmuir isotherm model. Mechanisms of MB adsorption included pore filling, hydrogen bonding, electrostatic interactions, π-π interactions, and complexation through surface functional groups. Additionally, ZMPLB-800 demonstrated excellent regeneration performance, recording a removal efficiency exceeding 87% even after five adsorption/desorption cycles. This study provides a novel strategy for treating dye wastewater with MOF composites, laying the foundation for waste biomass utilization.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Yutong Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Yile Du
- College of Liberal Arts & Sciences at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Shuangli Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Yunfan Bai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Chuhua Qi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Pingping Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Sijing Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China.
| |
Collapse
|
7
|
Zhang S, Hou J, Zhang X, Cai T, Chen W, Zhang Q. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T. CHEMOSPHERE 2024; 351:141288. [PMID: 38272135 DOI: 10.1016/j.chemosphere.2024.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Extensive use of oxytetracycline (OTC) and the generation of its corresponding resistance genes have resulted in serious environmental problems. Physical-biological combined remediation is an attractive method for OTC degradation because of its high remediation efficiency, stability, and environmental friendliness. In this study, an effective OTC-degrading strain identified as Pseudomonas aeruginosa OTC-T, was isolated from chicken manure. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without the biochar addition were 92.71-100 % and 69.11-99.59 %, respectively. Biochar improved the tolerance of the strain to extreme environments, and the OTC degradation rate increased by 20.25 %, 18.61 %, and 13.13 % under extreme pH, temperature, and substrate concentration conditions, respectively. Additionally, the degradation kinetics showed that biochar increased the reaction rate constant in the degradation system and shortened the degradation period. In the biological toxicity assessment, biochar increased the proportion of live cells by 17.63 % and decreased the proportion of apoptotic cells by 58.87 %. Metabolomics revealed that biochar had a significant effect on the metabolism of the strains and promoted cell growth and reproduction, effectively reducing oxidative stress induced by OTC. This study elucidates how biochar affects OTC biodegradation and provides insights into the future application of biochar-assisted microbial technology in environmental remediation.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
8
|
Jiang W, Cai Y, Liu D, Yu X, Wang Q. Enhanced adsorption performance of oxytetracycline in aqueous solutions by Mg-Fe modified suaeda-based magnetic biochar. ENVIRONMENTAL RESEARCH 2024; 241:117662. [PMID: 37967702 DOI: 10.1016/j.envres.2023.117662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Oxytetracycline (OTC) in the waste water can be removed by biochar adsorption. How to separate the biochar adsorbed antibiotics from the wastewater was also a problem. The nontoxic magnetic biochar was prepared from Suaeda biochar (800SBC) by mafic bimetal modification, and used for the removal of OTC. The results of XRD and VSM indicated that the main composition of biochar was ferrite. Then through batch adsorption experiments, the adsorption kinetics, isothermal adsorption, thermodynamics, and coexisting ion and adsorbent regeneration experiments were studied. Through the fitting of the adsorption model, it was found that Mg-Fe@800SBC(1:1) and 800SBC belonged to chemisorption. 800SBC was consistent with the Langmuir model, mainly monolayer adsorption, and Mg-Fe@800SBC(1:1) was consistent with the Freundlich model, mainly multilayer adsorption. The adsorption processes of the two materials were spontaneous, endothermic and entropic decreasing processes. The maximum adsorption capacity of the Mg-Fe@800SBC(1:1) for OTC from the Sips L-F model was 82.83 mg/g. Through various characterizations of magnetic biochar, it was found that the adsorption mechanism of the modified biochar included the hydrogen bonds between the oxygen-containing functional group of biochar and the -NH2 group of OTC, π-π EDA interaction, electrostatic attraction and complexation. Coexistence anions (CO32- and PO43-) have a negative effect on the adsorption process.
Collapse
Affiliation(s)
- Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Xuechun Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
9
|
Yazdanbakhsh A, Behzadi A, Moghaddam A, Salahshoori I, Khonakdar HA. Mechanisms and factors affecting the removal of minocycline from aqueous solutions using graphene-modified resorcinol formaldehyde aerogels. Sci Rep 2023; 13:22771. [PMID: 38123653 PMCID: PMC10733296 DOI: 10.1038/s41598-023-50125-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, concerns about the presence of pharmaceutical compounds in wastewater have increased. Various types of residues of tetracycline family antibiotic compounds, which are widely used, are found in environmental waters in relatively low and persistent concentrations, adversely affecting human health and the environment. In this study, a resorcinol formaldehyde (RF) aerogel was prepared using the sol-gel method at resorcinol/catalyst ratio of 400 and resorcinol/water ratio of 2 and drying at ambient pressure for removing antibiotics like minocycline. Next, RF aerogel was modified with graphene and to increase the specific surface area and porosity of the modified sample and to form the graphene plates without compromising the interconnected porous three-dimensional structure of the aerogel. Also, the pores were designed according to the size of the minocycline particles on the meso- and macro-scale, which bestowed the modified sample the ability to remove a significant amount of the minocycline antibiotic from the aqueous solution. The removal percentage of the antibiotic obtained by UV-vis spectroscopy. Ultimately, the performance of prepared aerogels was investigated under various conditions, including adsorbent doses (4-10 mg), solution pHs (2-12), contact times of the adsorbent with the adsorbate (3-24 h), and initial concentration of antibiotic (40-100 mg/l). The results from the BET test demonstrated that the surface area of the resorcinol formaldehyde aerogel sample, which included 1 wt% graphene (RF-G1), exhibited an augmentation in comparison to the surface area of the pure aerogel. Additionally, it was noted that the removal percentage of minocycline antibiotic for both the unmodified and altered samples was 71.6% and 92.1% at the optimal pH values of 4 and 6, respectively. The adsorption capacity of pure and modified aerogel for the minocycline antibiotic was 358 and 460.5 mg/g, respectively. The adsorption data for the modified aerogel was studied by the pseudo-second-order model and the results obtained from the samples for antibiotic adsorption with this model revealed a favorable fit, which indicated that the chemical adsorption in the rapid adsorption of the antibiotic by the modified aerogel had occurred.
Collapse
Affiliation(s)
| | - Alireza Behzadi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Armaghan Moghaddam
- Department of Polymer Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| |
Collapse
|
10
|
Xia M, Niu Q, Qu X, Zhang C, Qu X, Li H, Yang C. Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122728. [PMID: 37844861 DOI: 10.1016/j.envpol.2023.122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Due to the adverse effects of long-term oxytetracycline (OTC) residues in aquatic environments, an effective treatment is urgently needed. Immobilized microbial technology has been widely explored in the treatment of various organic pollutants in aquatic environments with its excellent environmental adaptability. Nevertheless, studies on its application in the removal of antibiotics are relatively scarce and not in sufficient depth. Only a few studies have further investigated the final fate of antibiotics in the immobilized bacteria system. In this study, a novel kind of OTC-degrading bacteria Mycolicibacterium sp. was immobilized on straw biochar and magnetic biochar, respectively. Magnetic biochar was proved to be a more satisfactory immobilization carrier due to its superior property and the advantage of easy recycling. Compared with free bacteria, immobilized bacteria had stronger environmental adaptability under different OTC concentrations, pH, and heavy metal ions. After 5 cycles, immobilized bacteria could still remove 71.8% of OTC, indicating that it had a stable recyclability. Besides, OTC in real swine wastewater was completely removed by immobilized bacteria within 2 days. The results of FTIR showed that bacteria were successfully immobilized on biochar and O-H, N-H, and C-N groups might be involved in the removal of OTC. The fate analysis indicated that OTC was removed by simultaneous adsorption and biodegradation, while biodegradation (92.8%) played a dominant role in the immobilized bacteria system. Meanwhile, the amount of adsorbed OTC (7.20%) was rather small, which could effectively decrease the secondary pollution of OTC. At last, new degradation pathways of OTC were proposed. This study provides an eco-friendly and effective approach to remedy OTC pollution in wastewater.
Collapse
Affiliation(s)
- Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China.
| | - Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Haoran Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| |
Collapse
|
11
|
Zhang S, Hou J, Zhang X, Cheng L, Hu W, Zhang Q. Biochar-assisted degradation of oxytetracycline by Achromobacter denitrificans and underlying mechanisms. BIORESOURCE TECHNOLOGY 2023; 387:129673. [PMID: 37579863 DOI: 10.1016/j.biortech.2023.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Contamination of the environment with large amounts of residual oxytetracycline (OTC) and the corresponding resistance genes poses a potential threat to natural ecosystems and human health. In this study, an effective OTC-degrading strain, identified as Achromobacter denitrificans OTC-F, was isolated from activated sludge. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without biochar addition were 95.01-100% and 73.72-99.66%, respectively. Biochar promotes the biodegradation of OTC, particularly under extreme environmental conditions. Toxicity evaluation experiments showed that biochar reduced biotoxicity and increased the proportion of living cells by 17.36%. Additionally, biochar increased the activity of antioxidant enzymes by 34.1-91.0%. Metabolomic analysis revealed that biochar promoted the secretion of antioxidant substances such as glutathione and tetrahydrofolate, which effectively reduced oxidative stress induced by OTC. This study revealed the mechanism at the molecular level and provided new strategies for the bioremediation of OTC in the environment.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjin Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
12
|
Bobde P, Sharma AK, Kumar R, Pal S, Pandey JK, Wadhwa S. Adsorptive removal of oxytetracycline using MnO 2-engineered pine-cone biochar: thermodynamic and kinetic investigation and process optimization. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1291. [PMID: 37821660 DOI: 10.1007/s10661-023-11932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Indiscriminate use of oxytetracycline is linked to the development of antibiotic-resistant genes, posing a serious threat to human health and ecosystem balance. This article reports the adsorptive elimination of oxytetracycline (OTC) from aqueous solution using a newly developed MnO2-modified pine-cone biochar (MnO2/PCBC). The MnO2/PCBC was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, CHNS analyzer, inductively coupled plasma-optical emission spectroscopy, and Brunauer-Emmett-Teller N2 adsorption analyzer. Batch adsorption experiments, designed using the central composite design framework of response surface methodology, were conducted to investigate the influence of process variables on the adsorption of OTC onto MnO2/PCBC. The optimized conditions for achieving maximum removal (88.1%) were found to be at pH 8, MnO2/PCBC dose 0.44 g/L, initial OTC concentration 200 mg/L, and temperature 303 K. The adsorption process follows Langmuir (R2=0.95) and Freundlich (R2=0.95) isotherms and pseudo-second-order (R2=0.99) adsorption kinetics. The adsorption process was found to be endothermic (ΔH0 = 33.04 kJ/mol) and spontaneous in nature (ΔG0 from -1.33 kJ/mol at 283 K to -5.65 kJ/mol at 313 K). The synthesized MnO2/PCBC could be recycled and reused for OTC removal with a percentage removal of around 80% after fifth cycle. The results indicate an effective removal of oxytetracycline with only 0.44 g/L MnO2/PCBC with maximum adsorption capacity of 357.14 mg/g which demonstrates improved performance in comparison to many adsorbents reported in literature. This implies that MnO2/PCBC offers potential to be developed into a cost-effective technique for antibiotic removal from water.
Collapse
Affiliation(s)
- Prakash Bobde
- Department of Research & Development, UPES University, Energy Acres Building, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Amit Kumar Sharma
- Center for Alternate Energy Research, UPES University, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Ranjit Kumar
- Center for Advanced Materials, Department of Chemical Engineering, Shiv Nadar Institution of Eminence, NCR, Delhi, 201314, India
| | - Sukdeb Pal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jitendra Kumar Pandey
- School of Engineering, UPES University, Energy Acres Building, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Shikha Wadhwa
- Applied Science Cluster, School of Engineering, UPES University, Energy Acres Building, Bidholi, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
13
|
Fan Y, Su J, Xu L, Liu S, Hou C, Liu Y, Cao S. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116307. [PMID: 37268205 DOI: 10.1016/j.envres.2023.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.
Collapse
Affiliation(s)
- Yong Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
14
|
Liu Q, Cao X, Yue T, Zhang F, Bai S, Liu L. Removal of tetracycline in aqueous solution by iron-loaded biochar derived from polymeric ferric sulfate and bagasse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87185-87198. [PMID: 37418186 DOI: 10.1007/s11356-023-28685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
In this study, the tetracycline (TC) removal performance of iron-loaded biochar (BPFSB) derived from sugarcane bagasse and polymerized iron sulfate was investigated, and the mechanism of TC removal was also explored by study of isotherms, kinetics and thermodynamics and characterization of fresh and used BPFSB (XRD, FTIR, SEM and XPS). The results showed that under optimized conditions (initial pH 2; BPFSB dosage 0.8 g·L-1; TC initial concentration 100 mg·L-1; Contact time 24 h; temperature 298 K), the removal efficiency of TC was as high as 99.03%. The isothermal removal of TC followed well the Langmuir, Freundlich, and Temkin models, indicating that multilayer surface chemisorption dominated the TC removal. The maximum removal capacity of TC by BPFSB at different temperatures was 185.5 mg·g-1 (298 K), 192.7 mg·g-1 (308 K), and 230.9 mg·g-1 (318 K), respectively. The pseudo-second-kinetic model described the TC removal better, while its rate-controlling step was a combination of liquid film diffusion, intraparticle diffusion, and chemical reaction. Meanwhile, TC removal was also a spontaneous and endothermic process, during which the randomness and disorder between the solid-liquid interface was increased. According to the characterization of BPFSBs before and after TC removal, H-bonding and complexation were the major interactions for TC surface adsorption. Furthermore, BPFSB was efficiently regenerated by NaOH. In summary, BPFSB had the potential for practical application in TC removal.
Collapse
Affiliation(s)
- Qiaojing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Cao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Fengzhi Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
15
|
Yáñez O, Alegría-Arcos M, Suardiaz R, Morales-Quintana L, Castro RI, Palma-Olate J, Galarza C, Catagua-González Á, Rojas-Pérez V, Urra G, Hernández-Rodríguez EW, Bustos D. Calcium-Alginate-Chitosan Nanoparticle as a Potential Solution for Pesticide Removal, a Computational Approach. Polymers (Basel) 2023; 15:3020. [PMID: 37514411 PMCID: PMC10383139 DOI: 10.3390/polym15143020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Pesticides have a significant negative impact on the environment, non-target organisms, and human health. To address these issues, sustainable pest management practices and government regulations are necessary. However, biotechnology can provide additional solutions, such as the use of polyelectrolyte complexes to encapsulate and remove pesticides from water sources. We introduce a computational methodology to evaluate the capture capabilities of Calcium-Alginate-Chitosan (CAC) nanoparticles for a broad range of pesticides. By employing ensemble-docking and molecular dynamics simulations, we investigate the intermolecular interactions and absorption/adsorption characteristics between the CAC nanoparticles and selected pesticides. Our findings reveal that charged pesticide molecules exhibit more than double capture rates compared to neutral counterparts, owing to their stronger affinity for the CAC nanoparticles. Non-covalent interactions, such as van der Waals forces, π-π stacking, and hydrogen bonds, are identified as key factors which stabilized the capture and physisorption of pesticides. Density profile analysis confirms the localization of pesticides adsorbed onto the surface or absorbed into the polymer matrix, depending on their chemical nature. The mobility and diffusion behavior of captured compounds within the nanoparticle matrix is assessed using mean square displacement and diffusion coefficients. Compounds with high capture levels exhibit limited mobility, indicative of effective absorption and adsorption. Intermolecular interaction analysis highlights the significance of hydrogen bonds and electrostatic interactions in the pesticide-polymer association. Notably, two promising candidates, an antibiotic derived from tetracycline and a rodenticide, demonstrate a strong affinity for CAC nanoparticles. This computational methodology offers a reliable and efficient screening approach for identifying effective pesticide capture agents, contributing to the development of eco-friendly strategies for pesticide removal.
Collapse
Affiliation(s)
- Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Reynier Suardiaz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3400000, Chile
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3400000, Chile
| | | | - Christian Galarza
- Escuela Superior Politécnica del Litoral, Guayaquil EC090903, Ecuador
| | | | - Víctor Rojas-Pérez
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile
| | - Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
- Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
16
|
Shi Q, Wang W, Zhang H, Bai H, Liu K, Zhang J, Li Z, Zhu W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. BIORESOURCE TECHNOLOGY 2023; 383:129213. [PMID: 37230330 DOI: 10.1016/j.biortech.2023.129213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this study, a high-performance porous adsorbent was prepared from biochar through a simple one-step alkali-activated pyrolysis treatment of walnut shells, and it was effective in removing tetracycline (TC). The specific surface area (SSA) of potassium hydroxide-pretreated walnut shell-derived biochar pyrolyzed at 900°C (KWS900) increased remarkably compared to that of the pristine walnut shell and reached 1713.87±37.05 m2·g-1. The maximum adsorption capacity of KWS900 toward TC was 607.00±31.87 mg·g-1. The pseudo-second-order kinetic and Langmuir isotherm models were well suited to describe the TC adsorption process onto KWS900. The KWS900 exhibited high stability and reusability for TC adsorption in the presence of co-existing anions or cations over a wide pH range of 1.0-11.0. Further investigations demonstrated that the proposed adsorption mechanism involved pore filling, hydrogen bonding, π-π stacking, and electrostatic interaction. These findings provide a valuable reference for developing biochar-based adsorbents for pollutant removal.
Collapse
Affiliation(s)
- Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wangbo Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongmin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- School of literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
17
|
Tang J, Ma Y, Deng Z, Li P, Qi X, Zhang Z. One-pot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water. BIORESOURCE TECHNOLOGY 2023; 381:129119. [PMID: 37141998 DOI: 10.1016/j.biortech.2023.129119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Tetracycline (TC) and sugarcane bagasse had both exerted enormous strain on environmental security. In this work, new composite adsorbent designed by impregnating bio-waste bagasse with magnesium-aluminum layered double oxides (BC-MA) was innovatively brought forward for TC removal. Benefiting from the abundant adsorption sites supplied by developed pores structure (0.308 cm3·g-1), enlarged surface area (256.8 m2·g-1) and reinforced functional groups, the maximum adsorption amount of BC-MA for TC reached 250.6 mg g-1. Moreover, BC-MA displayed desirable adsorption capacity in diverse water environments coupled with excellent sustainable regeneration ability. The absorption process of TC by BC-MA was spontaneous and endothermic, and the pivotal rate-limiting stage pertained to intraparticle diffusion. The mechanisms proposed here mainly concerned π-π interactions, pore filling, complexation and hydrogen bonding. These findings suggested that the synthesis of modified biochar from bagasse would offer new opportunities for simultaneous waste resource reuse and water pollution control.
Collapse
Affiliation(s)
- Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
18
|
Ding Z, Ge Y, Gowd SC, Singh E, Kumar V, Chaurasia D, Kumar V, Rajendran K, Bhargava PC, Wu P, Lin F, Harirchi S, Ashok Kumar V, Sirohi R, Sindhu R, Binod P, Taherzadeh MJ, Awasthi MK. Production of biochar from tropical fruit tree residues and ecofriendly applications - A review. BIORESOURCE TECHNOLOGY 2023; 376:128903. [PMID: 36931447 DOI: 10.1016/j.biortech.2023.128903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Environmental contamination is considered a major issue with the growing urbanization and industrialization. In this context, the scientific society is engaged in searching for a sustainable, safe, and eco-friendly solution. Sustainable materials such as biochar play an important role in environmental contamination. It has some specific properties such as micropores which increase the surface area to bind the pollutants. This review endeavors to analyze the potential of fruit wastes especially tropical fruit tree residues as potential candidates for producing highly efficient biochar materials. The review discusses various aspects of biochar production viz. pyrolysis, torrefaction, hydrothermal carbonization, and gasification. In addition, it discusses biochar use as an adsorbent, wastewater treatment, catalyst, energy storage, carbon sequestration and animal feed. The review put forward a critical discussion about key aspects of applying biochar to the environment.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Yu Ge
- School of Tropical Crops, Yunnan Agricultural University, Pu'er, Yunnan 665000, China
| | - Sarath C Gowd
- Department of Environmental Science & Engineering, School of Engineering and Sciences, SRM University - Andhra Pradesh, India
| | - Ekta Singh
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Deepshi Chaurasia
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Vikas Kumar
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Karthik Rajendran
- Department of Environmental Science & Engineering, School of Engineering and Sciences, SRM University - Andhra Pradesh, India
| | - Preeti Chaturvedi Bhargava
- AquaticToxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 Uttar Pradesh, India
| | - Peicong Wu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Fei Lin
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, China
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Veeramuthu Ashok Kumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies Dehradun, 248001 Uttarakhand, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
19
|
Liang H, Wang W, Liu H, Deng X, Zhang D, Zou Y, Ruan X. Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO 3) 2 for phosphate removal: Synergistic enhancement of porosity and active sites. CHEMOSPHERE 2023; 324:138320. [PMID: 36905997 DOI: 10.1016/j.chemosphere.2023.138320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Engineering magnesium oxide (MgO)-modified biochar (MgO-biochar) with high porosity and active MgO load is a feasible pathway to enhance phosphate adsorption capacity. However, the blockage to pores caused by MgO particles is ubiquitous during the preparation, which seriously impaired the enhancement in adsorption performance. In this research, with the intent to enhance phosphate adsorption, an in-situ activation method based on Mg(NO3)2-activated pyrolysis technology was developed to fabricate MgO-biochar adsorbents with abundant fine pores and active sites simultaneously. The SEM image revealed that the tailor-made adsorbent has well-developed porous structure and abundant fluffy MgO active sites. Its maximum phosphate adsorption capacity was coming up to 1809 mg/g. The phosphate adsorption isotherms are in accordance well with the Langmuir model. The kinetic data, which agreed with the pseudo-second-order model, indicated that chemical interaction is existing between phosphate and MgO active sites. This work verified that the phosphate adsorption mechanism on MgO-biochar was composed of protonation, electrostatic attraction, monodentate complexation and bidentate complexation. In general, the facile in-situ activation method using Mg(NO3)2 pyrolysis illuminated biochar activation with fine pores and highly efficient adsorption sites for efficient wastewater treatment.
Collapse
Affiliation(s)
- Hai Liang
- Dalian University of Technology, College of Chemical Engineering, Dalian, 116024, China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Wanting Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China.
| | - Xinzhong Deng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Dan Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Yuxuan Zou
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Xuehua Ruan
- Dalian University of Technology, College of Chemical Engineering, Dalian, 116024, China.
| |
Collapse
|
20
|
Song X, Zhang H, Zhang J, Sun R, Zhao J, Zhao H, Hu J, Liu Y. Removal of Ciprofloxacin from Water by a Potassium Carbonate-Activated Sycamore Floc-Based Carbonaceous Adsorbent: Adsorption Behavior and Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5323-5332. [PMID: 37027513 DOI: 10.1021/acs.langmuir.2c03330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, a porous carbonaceous adsorbent was prepared from sycamore flocs by pyrolysis method and K2CO3 activation. The effects of preparative conditions of the material on its adsorptive property were explored. The optimal material (SFB2-900) was obtained with a K2CO3/biochar mass ratio of 2:1 at an activation temperature of 900 °C, possessing a huge surface specific area (1651.27 m2/g). The largest adsorption capacity for ciprofloxacin on SFB2-900 was up to 430.25 mg/g. The adsorption behavior was well described by the pseudo-second-order kinetic model and the Langmuir isothermal model. Meanwhile, this process was spontaneous and exothermic. The obtained material showed excellent adsorption performance in the conditions of diverse pH range, ionic strength, and water quality of the solution. The optimum adsorption conditions (pH = 7.01, dosage = 0.6 g/L, and C0 = 52.94 mg/L) determined based on the response surface methodology were in accordance with the practical validation consequences. The good regeneration effect of SFB2-900 manifested that this material had great practical application potential. Combining the experimental results and density functional theory calculation results, the adsorption mechanisms mainly included pore filling, π-π EDA interactions, electrostatic interactions, and H-bonds. The material could be regarded as a novel and high-efficiency adsorbent for antibiotics. Additionally, these findings also provide reference for the reuse of waste biomass in water treatment.
Collapse
Affiliation(s)
- Xue Song
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan 450001, China
| | - Hongkui Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jie Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Runchao Sun
- Henan Academy of Sciences Institute of Energy Co. Ltd., Zhengzhou 450008, China
| | - Jihong Zhao
- Henan Radio and Television University, Zhengzhou, Henan 450001, China
| | - Hailiang Zhao
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Junkai Hu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan 450001, China
| |
Collapse
|
21
|
Wei Z, Hou C, Gao Z, Wang L, Yang C, Li Y, Liu K, Sun Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO 3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules 2023; 28:molecules28073188. [PMID: 37049949 PMCID: PMC10096365 DOI: 10.3390/molecules28073188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The effective removal of oxytetracycline hydrochloride (OTC) from the water environment is of great importance. Adsorption as a simple, stable, and cost-effective technology is regarded as an important method for removing OTC. Herein, a low-cost biochar with a developed mesoporous structure was synthesized via pyrolysis of poplar leaf with potassium bicarbonate (KHCO3) as the activator. KHCO3 can endow biochar with abundant mesopores, but excessive KHCO3 cannot continuously promote the formation of mesoporous structures. In comparison with all of the prepared biochars, PKC-4 (biochar with a poplar leaf to KHCO3 mass ratio of 5:4) shows the highest adsorption performance for OTC as it has the largest surface area and richest mesoporous structure. The pseudo-second-order kinetic model and the Freundlich equilibrium model are more consistent with the experimental data, which implies that the adsorption process is multi-mechanism and multi-layered. In addition, the maximum adsorption capacities of biochar are slightly affected by pH changes, different metal ions, and different water matrices. Moreover, the biochar can be regenerated by pyrolysis, and its adsorption capacity only decreases by approximately 6% after four cycles. The adsorption of biochar for OTC is mainly controlled by pore filling, though electrostatic interactions, hydrogen bonding, and π-π interaction are also involved. This study realizes biomass waste recycling and highlights the potential of poplar leaf-based biochar for the adsorption of antibiotics.
Collapse
Affiliation(s)
- Zhenhua Wei
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chao Hou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhishuo Gao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Luolin Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chuansheng Yang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yudong Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kun Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yongbin Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
22
|
Fang X, Huang Y, Fan X, Wang S, Huang Z, Zhou N, Fan S. Effect of water-washing pretreatment on the enhancement of tetracycline adsorption by biogas residue biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49720-49732. [PMID: 36780084 DOI: 10.1007/s11356-023-25817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/05/2023] [Indexed: 02/14/2023]
Abstract
Biochar preparation was a feasible strategy for realizing the reduction, harmlessness, and resource utilization of biogas residue (BR) simultaneously. How to enhance the adsorption performance of biogas residue biochar through simple, friendly, and effective way still needs to be investigated. In this study, water-washing pretreatment of BR was adopted before biochar preparation (BRBC-W), and pristine biochar (BRBC) was also produced to serve as control. The adsorption behavior and possible adsorption mechanisms of tetracycline (TC) onto biochars were comprehensively studied. The results showed that water-washing pretreatment could increase the surface area and mesoporous volume of biochar from 358.63 to 391.98 cm3∙g-1, and 0.459 to 0.488 cm3∙g-1, respectively. More graphitic structure was observed in BRBC-W. In addition, the surface morphology, element content, minerals composition, and surface functional groups also changed in biochar after water-washing pretreatment. The pseudo-second-order and Redlich-Peterson models better descried the adsorption behavior of TC on BCRBC-W. The maximum adsorption capacity of BRBC and BRBC-W for TC based on Langmuir isotherm was 224.93 and 306.94 mg·g-1, respectively. The adsorption affinity of BRBC-W toward TC was greater than that of BRBC. BRBC and BRBC-W can effectively remove TC in water within a wide pH range and under the interference of co-existing ions. The adsorption mechanism of TC onto BRBC and BRBC-W included ore filling, π-π interaction, and hydrogen bonding. The enhancement of TC on BRBC-W by water-washing pretreatment was attributable to the strengthening of pore diffusion and π-π interaction. Therefore, water-washing pretreatment effectively enhanced the adsorption performance of BRB, and BRBC-W was an effective eco-friendly adsorbent for the removal of TC from aquatic environment.
Collapse
Affiliation(s)
- Xiang Fang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Huang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xinru Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zijian Huang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Na Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Tang J, Ma Y, Zeng C, Yang L, Cui S, Zhi S, Yang F, Ding Y, Zhang K, Zhang Z. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. BIORESOURCE TECHNOLOGY 2023; 369:128385. [PMID: 36423760 DOI: 10.1016/j.biortech.2022.128385] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The clusters formed by modified materials on its surface makes the application of functionalized biochars in adsorption face a great challenge. Here, a facile ball milling technology was innovatively proposed to tailor Fe-Al oxides-laden bagasse biochar to fabricate a novel adsorbent (BMFA-BC). Benefited from the increased exposure of Fe-Al oxides and, more importantly, enhanced functional groups by ball milling, the adsorption capacity of BMFA-BC for aqueous tetracycline reached up to 116.6 mg g-1 at 298 K. And the adsorption performance was temperature-dependent. Characterization analysis, batch sorption (thermodynamics, kinetics, isotherms, chemical factors) as well as data modeling illustrated that this superior adsorption ability could be attributed to π-π conjugation, H-bonding, complexation as well as pore filling. BMFA-BC displayed good adsorption capacity in multiple aqueous environments. The excellent regeneration ability, magnetic susceptibility ensured its viability for sustainable pollutants removal. These superiorities revealed that BMFA-BC was a suitable sorbent for antibiotics elimination.
Collapse
Affiliation(s)
- Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
24
|
Enhancement on Removal of Oxytetracycline in Aqueous Solution by Corn Stover Biochar: Comparison of KOH and KMnO4 Modifications. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Li H, Li D, Long M, Bai X, Wen Q, Song F. Solvothermal synthesis of MIL-53Fe@g-C3N4 for peroxymonosulfate activation towards enhanced photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Li X, Gan T, Zhang J, Shi Z, Liu Z, Xiao Z. High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide. BIORESOURCE TECHNOLOGY 2022; 361:127646. [PMID: 35868467 DOI: 10.1016/j.biortech.2022.127646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in water has been an increasing global concern, and how to effectively remove antibiotics (e.g., oxytetracycline [OTC] hydrochloride) from wastewater becomes imperative. In this study, the biochar derived from an invasive plant (Mikania micrantha Kunth) was synthesized with Zn/Fe- layered double hydroxide (LDH) by co-precipitation method (ZnFe-LDH/MBC) to remove OTC from water. ZnFe-LDH/MBC posed the highest OTC removal performance of 426.61 mg/g. ZnFe-LDH/MBC exhibited stability and efficiency in OTC adsorption at different pH levels and under interfering conditions with co-existing ions, as well as outstanding regeneration capabilities during adsorption-desorption cycles. Furthermore, the removal of OTC by ZnFe-LDH/MBC was mediated by several processes including pore filling, hydrogen bonding force, electrostatic interaction, π-π interaction, as well as complexation. Consequently, ZnFe-LDH/MBC has excellent potential for the purification of OTC pollutants that is low-cost, efficient, and environmentally friendly.
Collapse
Affiliation(s)
- Xiaoying Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tian Gan
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoji Shi
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zeheng Xiao
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Zhang D, Sun J, Li Q, Song H, Xia D. Cu-Doped magnetic loofah biochar for tetracycline degradation via peroxymonosulfate activation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02885a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu-doped deactivated magnetic biochar exhibited high PMS activation to degrade TC with a high removal rate of 97.6%.
Collapse
Affiliation(s)
- Dajie Zhang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P. R. China
| | - Jiabao Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P. R. China
| | - Haocheng Song
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P. R. China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P. R. China
| |
Collapse
|