1
|
Xia Y, Chen X, Jiang X, Shen J. Enhanced denitrification under saline Conditions: Glycine betaine as a key osmoprotectant. BIORESOURCE TECHNOLOGY 2025; 429:132517. [PMID: 40222492 DOI: 10.1016/j.biortech.2025.132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Biological denitrification is significantly inhibited by salinity, which adversely affects microbial activity and reduces efficiency. This study aimed to evaluate the impact of salinity on denitrification performance and assess the potential of glycine betaine (GB) as an osmotic pressure regulator and protective agent. Results indicated that under the optimal conditions, including an influent nitrate concentration of 51.03 mg L-1, C/N ratio of 5.42, pH value of 8.95, and salinity of 1.05 %, the nitrate removal efficiency was predicted to reach 100 %. However, a sharp decline (56.09 ± 4.52 %) in nitrate removal efficiency occurred when salinity increased from 0 % to 3 % within the initial 6 h. This inhibition was mitigated by adding 25 mg L-1 GB, which enhanced nitrate removal efficiency by 2.19 times. GB promoted the secretion of extracellular polymeric substances (EPS), especially polymeric protein, a critical contributor to salinity resistance. Metagenomics analysis revealed that GB improved denitrification process by upregulating key genes involved in nitrogen and carbon metabolism. Furthermore, the relative abundance of Na+ transporter genes, K+ transporter genes, and GB absorption and synthesis genes rose with GB addition, underscoring the indispensable role of GB in alleviating osmotic stress and accelerating microbial metabolism. These findings emphasize the detrimental effects of salinity on denitrification and demonstrate the potential of GB as an osmoprotectant, enabling efficient nitrogen removal under saline conditions.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xinrong Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
2
|
de Carvalho CB, da Silva VEPSG, Frutuoso FKA, Dos Santos AB. Influence of saline stress in alternating pulses on aerobic granulation and resource production using different inoculum sources. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03163-z. [PMID: 40221615 DOI: 10.1007/s00449-025-03163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Aerobic granular sludge (AGS) is a promising technology for wastewater treatment, particularly for its ability to recover valuable resources such as polyhydroxyalkanoates, alginate-like exopolysaccharide, and phosphorus. However, achieving stable granule formation remains a significant challenge. Research has shown that the addition of salt can accelerate the granulation process and enhance bioresource production. The source of the seed biomass is also critical for the system's success, with most AGS studies using activated sludge as the inoculum. This study aims to compare granulation, reactor performance, and bioresource recovery outcomes using inocula from different sources while also evaluating the impact of saline stress. Four sequential batch reactors were monitored, differing in the type of inoculum sludge (biomass from an aerated biofilter or activated sludge systems) and the presence of NaCl in the feed. The saline feed alternated between cycles containing 5 gNaCl/L and conventional feed without NaCl. Osmotic pressure was found to favor granulation and solids accumulation in both types of biomasses. Reactors inoculated with activated sludge and subjected to salt addition achieved complete granulation more rapidly. In contrast, reactors inoculated with submerged aerated biofilter sludge exhibited higher solids concentrations. All systems demonstrated excellent chemical oxygen demand removal, with activated sludge reactors showing superior performance in ammonia and total nitrogen removal and bioresources recovery. Salt addition stimulated the production of extracellular polymeric substances and amino acids such as tyrosine and tryptophan while reducing the intensity of fulvic acid-like substances, irrespective of the inoculum type.
Collapse
Affiliation(s)
- Clara Bandeira de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bloco 713, Pici, Fortaleza, Ceará, CEP: 60455-900, Brazil
| | | | - Francisca Kamila Amancio Frutuoso
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bloco 713, Pici, Fortaleza, Ceará, CEP: 60455-900, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Campus do Pici, Bloco 713, Pici, Fortaleza, Ceará, CEP: 60455-900, Brazil.
| |
Collapse
|
3
|
Liu Y, Li S, Xing D, Jin C, Zhao Y, Zhao J, Guo L. Performance of four thermophilic bacteria for primary sludge hydrolysis: Sludge disintegration and hydrolase activities. BIORESOURCE TECHNOLOGY 2025; 420:132123. [PMID: 39880337 DOI: 10.1016/j.biortech.2025.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed. Results indicated that pretreatment with four strains promoted the release of organic matter in extracellular polymeric substance and the disintegration of sludge structure, causing the increase of soluble substances. The total percent fluorescence response of tyrosine-like and soluble microbial by-products in dissolved organic matter increased to 64.8% after pretreatment with strain X4. Moreover, pretreatment with strain X4 resulted in the highest relative activities of α-glucosidase (1.4) and protease (2.0). Engineering implication and economic analysis verified that TB pretreatment has the potential for economic benefits and industrial applications. This study demonstrated that strain X4 exhibited the highest hydrolysis efficiency, providing a new strategy for accelerating primary sludge hydrolysis.
Collapse
Affiliation(s)
- Yonghao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Zhang YQ, Han JL, Cheng HY, Wang HC, Liu TJ, Liang B, Wang AJ. Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 24:100542. [PMID: 40083747 PMCID: PMC11905840 DOI: 10.1016/j.ese.2025.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/16/2025]
Abstract
The sustainable treatment of hypersaline organic wastewater (HSOW) remains a significant challenge in industrial wastewater management, as conventional approaches often fail to meet stringent discharge standards and low-carbon sustainability targets. Halotolerant and halophilic microbial strains offer promising solutions, yet their application is hindered by limited stress resistance, thus hindering effective treatment and achieving near-zero liquid discharge. In this review, we systematically examine endogenous strategies, such as microbial mutualism and genetic engineering, alongside exogenous approaches, including functional materials, electrical and magnetic stimulation, and 3D bioprinting, to improve microbial resilience in hypersaline environments. Furthermore, we propose an integrated treatment framework that combines physicochemical and biochemical processes, leveraging biological detoxification and biological desalination to enhance the treatment of HSOW while minimizing environmental impact and carbon emissions. By advancing the understanding of microbial stress adaptation and optimization strategies, this review provides critical insights into the development of sustainable, low-carbon wastewater treatment solutions.
Collapse
Affiliation(s)
- Yan-Qing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Tie-Jun Liu
- Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen, 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
5
|
Hu Y, Gu Y, Tan J, Ding C, Yu X, Li Z, Lin H. Effective denitrification from landfill leachate using magnetic PVA/CMC/DE carrier immobilized microorganisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:228-237. [PMID: 39823856 DOI: 10.1016/j.wasman.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Ammonia nitrogen (NH4+-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and Fe3O4 were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH4+-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers. The obtained optimal raw material ratio was 99.10 %. The obtained carriers are spherical (4-5 mm in diameter) with a rich honeycombed pore structure. The magnetic carrier improves the ammonia oxidation activity, and the carrier achieved 99.0 % of NH4+-N and 86.7 % of total nitrogen (TN) removal rates from the simulated wastewater (NH4+-N concentration: 300 mg/L) through nitrification and denitrification under aerobic conditions. Upon applied for a 60 days' treatment of landfill leachate (NH4+-N concentration of 300 mg/L), the daily removal rates for NH4+-N and TN reached 93.7 % and 78.3 %, respectively. The analysis of the microbial community showed that the abundances of heterotrophic nitrifying-aerobic denitrifying bacteria including Enterobacter, Pseudomonas, and Bacillus increased with prolonging treatment days, which accelerated nitrification and denitrification, consequently promoting the nitrogen removal effect.
Collapse
Affiliation(s)
- Yunshuang Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yufei Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiahui Tan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chong Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xinyi Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhixia Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Hongfei Lin
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| |
Collapse
|
6
|
Xu J, Liu S, Zhou J, Li L, Bi X, Han W, Wu D. Response of aerobic granular sludge to salinity fluctuations in formation, stability and microbial community structures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176471. [PMID: 39322072 DOI: 10.1016/j.scitotenv.2024.176471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aerobic granular sludge (AGS) exhibits excellent resistance to adverse environment due to its unique layered structure. However, the mechanism about how salinity fluctuations in municipal wastewater impact AGS formation and its physicochemical properties has not been thoroughly revealed. In this study, AGS was cultivated under additional 0 % salinity (R1), additional 1.5 % constant salinity (R2), and additional 0-1.5 % fluctuant salinity (R3), respectively. The results indicate that increased salinity can enhance extracellular polymeric substances (EPS) production and improve sludge settleability, thereby facilitate AGS formation. However, the AGS experienced frequent environmental conversion between dehydration and swell due to salinity fluctuations, resulting in higher content of loosely-bond EPS and low settleability, which delayed the maturation of AGS for over 14 days. Additional salinity significantly inhibited the nitrification process, but the formation of AGS promoted the recovery of ammonia oxidation activity and facilitated the construction of short-range nitrification denitrification processes, resulting in over 16.0 % higher total nitrogen removal efficiency than R1. The microbial community analysis revealed that Thauera played an important role in the granulation process under salinity stress, due to its salt tolerance and EPS secretion abilities. As expected, the formation of AGS enhanced the salt resistance of microorganisms, allowing for the enrichment of functional bacteria, such as Flavobacterium and Candidatus_Competibacter. Generally, microorganisms required extended adaptation periods to cope with salinity fluctuations. Nevertheless, the resulting AGS proved stable and efficient wastewater treatment performance.
Collapse
Affiliation(s)
- Jie Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Shichang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Jiazhong Zhou
- Qingdao Key Laboratory of Green and Low Carbon Biofilm and Water Environment Restoration, Qingdao SPRING Water Treatment Co. Ltd., China
| | - Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Wenjie Han
- Qingdao Key Laboratory of Green and Low Carbon Biofilm and Water Environment Restoration, Qingdao SPRING Water Treatment Co. Ltd., China
| | - Di Wu
- Qingdao Key Laboratory of Green and Low Carbon Biofilm and Water Environment Restoration, Qingdao SPRING Water Treatment Co. Ltd., China.
| |
Collapse
|
7
|
Yan HJ, Cui YW, Chen S, Wang X. Effects of magnetic field exposure patterns on polyhydroxyalkanoates synthesis by Haloferax mediterranei at extreme hypersaline context: Carbon distribution and salt tolerance. Int J Biol Macromol 2024; 283:137769. [PMID: 39561839 DOI: 10.1016/j.ijbiomac.2024.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The synthesis of polyhydroxyalkanoates (PHAs) by extremophiles presents a promising alternative to mitigate pollution originating from the use of petroleum-based plastics. This study focuses on the impact of different magnetic field (MF) exposure patterns on PHA production and carbon metabolism, aiming to enhance PHA productivity by Haloferax mediterranei within the extreme hypersaline environment and subsequently reducing production costs. Results indicated that under 300 g/L salinity, the highest PHA productivity (1.45 ± 0.06 g/(L d)) and PHA content (65.91 % PHA/cell dry weight) were achieved with 50 mT MF exposure throughout the fermentation period. Continuous exposure to 50 mT MF proved vital for maximizing cell biomass and PHA productivity. Continuous exposure to 50 mT MF enabled Haloferax mediterranei to channel acetyl-CoA towards the PHA synthesis pathway while maintaining growth and proliferation. Correlation analysis further proved the principal role of carbon flux on PHA accumulation. Due to the demand for balancing osmotic pressure, cellular substances were sacrificed to ensure PHA synthesis as anti-salinity substance. Meanwhile, the observed promotion of MF on PHA production, betaine aldehyde dehydrogenase activity, and K+ uptake contributed to sustaining cellular activity at 300 g/L salinity. This study provides a non-gene editing approach to enhance PHA productivity.
Collapse
Affiliation(s)
- Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Si Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Beijing Municipal Research Institute of Eco-Environmental Protection, National Engineering Research Center for Urban Environmental Pollution Control, Beijing 100037, China
| |
Collapse
|
8
|
Liu X, Yu J, Wang H, Jin C, Zhao Y, Guo L. Effect of magnetic powder (Fe 3O 4) on heterotrophic-sulfur autotrophic denitrification efficiency and electron transport system activity for marine recirculating aquacultural wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122749. [PMID: 39368389 DOI: 10.1016/j.jenvman.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
As an efficient nitrogen removal process, heterotrophic-sulfur autotrophic denitrification (HSAD) has attracted extensive attention in wastewater treatment. However, the effects of magnetic powder (Fe3O4) on the electron transport activity in HSAD process remain unclear. Therefore, in this study, a heterotrophic-sulfur autotrophic denitrification system was established to remove nitrogen from marine recirculating aquacultural wastewater for evaluating the effects of Fe3O4. At the optimal Fe3O4 concentration of 50 mg/L, the nitrogen removal efficiency reached 100% with lower sulfate accumulation, and the start-up time was shortened. The assays of denitrifying enzymes and electron transport system activity showed that Fe3O4 improved the activities of nitrate and nitrite reductases, and increased the efficiency of electron transport. Microbial community analysis revealed that Fe3O4 enriched heterotrophic denitrifier Thauera and sulfur autotrophic denitrifier Canditatus Thiobios, and thus enhanced denitrification efficiencies. This study demonstrated that Fe3O4 is an efficient denitrification accelerator in HSAD for treating marine recirculating aquacultural wastewater.
Collapse
Affiliation(s)
- Xiangrong Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinghan Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
9
|
Wang H, Xing D, Jin C, Zhao Y, Guo L. Cooperation of rhamnolipid and thermophilic bacteria modifies proteinic structure, microbial community, and metabolic traits for efficient solubilization and acidogenesis of mariculture solid wastes. WATER RESEARCH 2024; 268:122634. [PMID: 39461217 DOI: 10.1016/j.watres.2024.122634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Anaerobic fermentation combined with thermophilic bacteria (TB) pretreatment is a promising method to realize effective waste management and carbon resource recovery. However, undesirable properties of high-strength mariculture solid wastes (MSW) such as high solids concentration, excessive salinity and poor bioavailability limited the overall solubilization and acidogenic efficiency. This study innovatively introduced rhamnolipid (RL) to alleviate this adverse effect, and unveiled its cooperation with TB on enhancing organic matter dissolution and volatile fatty acids (VFAs) production. The results showed that VFAs yield from pretreated MSW was improved by 9.4-15.1 folds with enriched acetate (81.4%-94.4%) in the TB+RL groups. The co-pretreatment of RL and TB disintegrated substrate structure for efficient release of electron shuttles and biodegradable organics. This was because introducing RL reconstructed solid-liquid interfacial charge and molecular arrangement, improved thermophilic enzyme activity, and reduced apoptosis and necrosis cells of TB. Substrate bioavailability was further improved with proteinic structure shifted from α-helix and β-sheet to random coil and aggregated strands, and amide II and carboxyl groups interacted with RL molecules. These changes induced the selective enrichment of hydrolytic and acidogenic bacteria, and the upregulated expression of encoding genes responsible for transmembrane transport, protein hydrolysis, carbohydrate metabolism and acetate biosynthesis. This study provides a new strategy to overcome the bottlenecks of acidogenesis from high-strengthen organic wastes and deciphers the underlying mechanism.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
10
|
Lin Y, Chen Y, Wang H, Yu Y, Wang Y, Ma S, Wang L, Ren H, Xu K. Weak magnetic field promotes denitrification by stimulating ferromagnetic ion-containing metalloprotein expression. WATER RESEARCH 2024; 262:122116. [PMID: 39032337 DOI: 10.1016/j.watres.2024.122116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Weak magnetic field (WMF) has been recognized to promote biological denitrification processes; however, the underlying mechanisms remain largely unexplored, hindering the optimization of its effectiveness. Here, we systematically investigated the effects of WMF on denitrification performance, enzyme activity, microbial community, and metaproteome in packed bed bioreactors treating high nitrate wastewater under different WMF intensities and C:N ratios. Results showed that WMFs significantly promoted denitrification by consistently stimulating the activities of denitrifying reductases and NAD+/NADH biosynthesis across decreasing C:N ratios. Reductases and electron transfer enzymes involved in denitrification were overproduced due to the significantly enriched overexpression of ferromagnetic ion-containing (FIC) metalloproteins. We also observed WMFs' intensity-dependent selective pressure on microbial community structures despite the effects being limited compared to those caused by changing C:N ratios. By coupling genome-centric metaproteomics and structure prediction, we found the dominant denitrifier, Halomonas, was outcompeted by Pseudomonas and Azoarcus under WMFs, likely due to its structural deficiencies in iron uptake, suggesting that advantageous ferromagnetic ion acquisition capacity was necessary to satisfy the substrate demand for FIC metalloprotein overproduction. This study advances our understanding of the biomagnetic effects in the context of complex communities and highlights WMF's potential for manipulating FIC protein-associated metabolism and fine-tuning community structure.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yanting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yuexin Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Laichun Wang
- Yixing Environmental Research Institute of Nanjing University, Yixing, 214200, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
11
|
Wang C, Qi WK, Zhang SJ, Liu LF, Peng YZ. Innovation for continuous aerobic granular sludge process in actual municipal sewage treatment: Self-circulating up-flow fluidized bed process. WATER RESEARCH 2024; 260:121862. [PMID: 38908310 DOI: 10.1016/j.watres.2024.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Aerobic granular sludge (AGS) capable of nitrogen and phosphorus removal is mainly limited to the applications in sequencing batch reactors. This study introduced an innovative continuous self-circulating up-flow fluidized bed process (Zier process) using separate aeration. The process was composed of an anoxic column (Zier-A), aeration column (Zier-OO) and aerobic column (Zier-O), and was used to treat actual municipal sewage continuously for 170 days. The process achieved self-circulation of 20-32 times and an up-flow velocity within the reactor of 7-16 m/h which were accurately controlled with only separate aeration. The larger proportion of self-circulating multiple times contributed to particle formation and stability, providing hydraulic shear conditions, and screened the precipitation performance of the granular sludge (GS). Meanwhile, the dissolved oxygen (DO) of Zier-O was controlled at 0.1-0.3 mg/L, and the DO of Zier-A input water was zero. The accurate oxygen supply enhanced simultaneous nitrification and denitrification (SND) as well as short-cut nitrification and denitrification in Zier-O and improved the COD utilization rate and the nitrogen removal rate in Zier-A. The COD treatment capacity reached 2.46 kg-COD/(m³·d). With a hydraulic retention time of 10 h, the process consistently ensured that the average concentrations of ammonia nitrogen and total nitrogen in the effluent were maintained below 5 and 15 mg/L, respectively. Moreover, the process maintained the shape and stability of GS, the median diameter of GS ranged between 300-1210 μm, the percentage of mass with particle size distribution < 200 μm at a height of 150 cm within Zier-A and Zier-O accounted for as low as 0.04%-0.05%, and showed good settling performance. The suspended solids in effluent can be maintained at 50-80 mg/L. Overall, the unique structural setting and control method of the Zier process provide another approach for the application of continuous AGS treatment for municipal sewage.
Collapse
Affiliation(s)
- Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Li-Fang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
12
|
Le HQ, Duong CC, Chang HM, Nguyen NC, Chien IC, Ngo HH, Chen SS. Innovative hyper-thermophilic aerobic submerged membrane distillation bioreactor for wastewater reclamation. CHEMOSPHERE 2024; 362:142743. [PMID: 38950740 DOI: 10.1016/j.chemosphere.2024.142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.5% for organic matter, 96.4% for ammonia, and 100% for phosphorus underscored the impressive adaptability of microorganisms to challenging hyper-thermophilic conditions and a successful combination with the MD process. Despite the extreme temperatures and substantial salinity accumulation reaching up to 12,532 μS/cm, the biomass of microorganisms increased by 1.6 times over a 92-day period, representing their remarkable resilience. The distillation flux ranged from 6.15 LMH to 8.25 LMH, benefiting from the temperature gradient in the hyper-thermophilic setting and the design of the tubular submerged MD membrane module. The system also excels in pH control, utilizing fewer alkali and nutritional resources than conventional systems. Meiothermus, Firmicutes, and Bacteroidetes, the three dominant species, played a crucial role, showcasing their significance in adapting to high salinity and decomposing organic matter.
Collapse
Affiliation(s)
- Huy Quang Le
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan; Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Viet Nam
| | - Chinh Cong Duong
- Southern Institute of Water Resources Research, 658 Vo Van Kiet Street, District 5, Ho Chi Minh City, 700000, Viet Nam
| | - Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
| | - Nguyen Cong Nguyen
- Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Viet Nam
| | - I-Chieh Chien
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, 251301, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan.
| |
Collapse
|
13
|
Wu Z, Zhao T, Zhang Y, Wang Y, Chen P, Lu G, Huang S, Qiu G. Iron-enhanced microscale laboratory aerated filters in the treatment of artificial mariculture wastewater: A study on nitrogen removal performance and the impact on microbial community structure. CHEMOSPHERE 2024; 357:141854. [PMID: 38556181 DOI: 10.1016/j.chemosphere.2024.141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the nitrogen removal efficacy and microbial community dynamics in seawater aquaculture effluent treatment using three different substrate combinations of microscale laboratory aerated filters (MFs) - MF1 (LECA), MF2 (LECA/Fe-C), and MF3 (LECA/Pyrite). The findings indicated that the COD removal exceeded 95% across all MFs, with higher removal efficiencies in MF2 and MF3. In terms of nitrogen removal performance, MF2 exhibited the highest average nitrogen removal of 93.17%, achieving a 12.35% and 3.56% increase compared to MF1 (80.82%) and MF3 (89.61%), respectively. High-throughput sequencing analysis revealed that the Fe-C substrate significantly enhanced the diversity of the microbial community. Notably, in MF2, the salinophilic denitrifying bacterium Halomonas was significantly enriched, accounting for 42.6% of the total microbial community, which was beneficial for nitrogen removal. Moreover, an in-depth analysis of nitrogen metabolic pathways and microbial enzymes indicated that MF2 and MF3 possessed a high abundance of nitrification and denitrification enzymes, related to the high removal rates of NH4+-N and NO3--N. Therefore, the combination of LECA with iron-based materials significantly enhances the nitrogen removal efficiency from mariculture wastewater.
Collapse
Affiliation(s)
- Zhipeng Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yu Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Chen L, Xiang H, Zhou LT, Zhang YQ, Ding YC, Wu D, Zhu NW, Zhang YF, Feng HJ. Low-voltage stimulated denitrification performance of high-salinity wastewater using halotolerant microorganisms. BIORESOURCE TECHNOLOGY 2024; 401:130688. [PMID: 38604298 DOI: 10.1016/j.biortech.2024.130688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.
Collapse
Affiliation(s)
- Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Hai Xiang
- College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Li-Ting Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yan-Qing Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Di Wu
- Center for Environmental and Energy Research (CEER) - Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, South Korea
| | - Nan-Wen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Feng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
15
|
Li S, Xing D, Sun C, Jin C, Zhao Y, Gao M, Guo L. Effect of light intensity and photoperiod on high-value production and nutrient removal performance with bacterial-algal coupling system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120595. [PMID: 38520851 DOI: 10.1016/j.jenvman.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Direct discharge of mariculture wastewater can lead to eutrophication, posing a threat to aquatic ecosystems. A novel Bacteria-Algae Coupled Reactor (BACR) offers advantages in treating mariculture wastewater, which can effectively remove pollutants while simultaneously obtaining microalgal products. However, there is limited information available on how illumination affects the cultivation of mixotrophic microalgae in this bacteria-algae coupling system. Therefore, a combined strategy of photoperiod and light intensity regulation was employed to improve the biological mariculture wastewater remediation, promote microalgae biomass accumulation, and increase the high-value product yield in this study. Optimal light conditions could effectively enhance microalgal carbohydrate, protein, lipid accumulation and photosynthetic activity, with the carbohydrate, protein and lipid contents reached 44.11, 428.57 and 399.68 mg/L, respectively. Moreover, excellent removal rates were achieved for SCOD, NH4+-N and TP, reaching 86.68%, 87.35% and 95.13% respectively. This study proposes a comprehension of BACR processes in mariculture wastewater under different light conditions.
Collapse
Affiliation(s)
- Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao, 266100, China.
| |
Collapse
|
16
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
17
|
Luan YN, Yin Y, Guo Z, Wang Q, Xu Y, Zhang F, Xiao Y, Liu C. Partial nitrification-denitrification and enrichment of paracoccus induced by iron-chitosan beads addition in an intermittently-aerated activated sludge system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120189. [PMID: 38295644 DOI: 10.1016/j.jenvman.2024.120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Insufficient carbon source has become the main limiting factor for efficient nitrogen removal in wastewater treatment. In this study, an intermittently-aerated activated sludge system with iron-chitosan (Fe-CS) beads addition was proposed for nitrogen removal from low C/N wastewater. By adding Fe-CS beads, partial nitrification-denitrification (PND) process and significant enrichment of Paracoccus (with ability of iron reduction/ammonium oxidation/aerobic denitrification) were observed in the reactor. The accumulation rate of NO2--N reached 81.9 %, and the total nitrogen removal efficiency was improved to 93.9 % by shortening the aeration time. The higher activity of ammonium oxidizing bacteria and inhibited activity of nitrite-oxidizing bacteria in Fe-CS assisted system mediated the occurrence of PND. In contrast, the traditional nitrification and denitrification process occurred in the control group. The high-throughput sequencing analysis and metagenomic results confirmed that the addition of Fe-CS induced 77.8 % and 54.9 % enrichment of Paracoccus in sludge and Fe-CS beads, respectively, while almost no enrichment was observed in control group. Furthermore, with the addition of Fe-CS beads, the expression of genes related to outer membrane porin, cytochrome c, and TCA was strengthened, thereby enhancing the electron transport of Fe(Ⅱ) (electron donor) and Fe(Ⅲ) (electron acceptor) with pollutants in the periplasm. This study provides new insights into the direct enrichment of iron-reducing bacteria and its PND performance induced by the Fe-CS bead addition. It therefore offers an appealing strategy for low C/N wastewater treatment.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Zhonghong Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Qing Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Yanming Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang East Road, Qingdao, 266520, China.
| |
Collapse
|
18
|
Huang M, Zhang H, Ren M, Ji B, Sun K. The synthesis of ectoine enhance the assimilation of ammonia nitrogen in hypersaline wastewater by the salt-tolerant assimilation bacteria sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169694. [PMID: 38160842 DOI: 10.1016/j.scitotenv.2023.169694] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
In contrast to nitrification-denitrification microorganisms that convert ammonia nitrogen in hypersaline wastewater into nitrogen for discharge, this research utilizes sludge enriched with salt-tolerant assimilation bacteria (STAB) to assimilate organic matter and ammonia nitrogen in hypersaline wastewater into ectoine - a biomass with high economic value and resistance to external osmotic pressure. The study investigates the relationship between the synthesis of ectoine and nitrogen removal efficiency of STAB sludge in three sequencing batch reactors (SBR) operated at different salinities (50, 75, and 100 g/L) and organic matter concentrations. The research reveals that, under low concentration carbon sources (TOC/N = 4, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of SBR reactors increased by 14.51 % and 17.25 % within 5 d and 2 d, respectively, when salinity increased from 50 g/L to 75 g/L and 100 g/L. Under high concentration carbon sources (TOC/N = 8, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of STAB sludge in the three reactors stabilized at 80.20 %, 76.71 %, and 72.87 %, and the total nitrogen removal efficiency was finally stabilized at 80.47 %, 73.15 %, and 65.53 %, respectively. The nitrogen removal performance by ammonium-assimilating of STAB sludge is more sustainable under low salinity, while it is more short-term explosive under high salinity. Moreover, the intracellular ectoine concentration of STAB sludge was found to be related to this behavior. Empirical formulas confirm that STAB sludge synthesizes ectoine from nutrients in wastewater through assimilation, and intracellular ectoine has a threshold defect (150 mg/gVss). The ectoine metabolism pathways of STAB sludge was constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The ammonia nitrogen in sewage is converted into glutamic acid under the action of assimilation genes. It then undergoes a tricarboxylic acid cycle to synthesize the crucial precursor of ectoine - aspartic acid. Subsequently, ectoine is produced through ectoine synthase. The findings suggest that when the synthesis of intracellular ectoine reaches saturation, it inhibits the continuous nitrogen removal performance of STAB sludge under high salinity. STAB sludge does not actively release ectoine through channels under stable external osmotic pressure.
Collapse
Affiliation(s)
- Minglei Huang
- Zhejiang University, 310013, China; NingboTech University, 315100, China
| | | | - Min Ren
- Ningbo Marine Center, Ministry of Natural Resources, 315100, China
| | - Bixiao Ji
- NingboTech University, 315100, China
| | - Keying Sun
- Zhejiang University, 310013, China; NingboTech University, 315100, China
| |
Collapse
|
19
|
Guo L, Li L, Zhou S, Xiao P, Zhang L. Metabolomic insight into regulatory mechanism of heterotrophic bacteria nitrification-aerobic denitrification bacteria to high-strength ammonium wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130278. [PMID: 38168563 DOI: 10.1016/j.biortech.2023.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
This work aimed to elucidate the metabolic mechanism of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria influenced by varying concentrations of ammonium nitrogen (NH4+-N) in high-strength synthetic wastewater treatment. The results showed that the removal rates of NH4+-N and total nitrogen, along with enzymatic activities related to nitrification and denitrification, increased with rising NH4+-N concentrations (N500:500 mg/L, N1000:1000 mg/L and N2000:2000 mg/L). The relative abundances of HN-AD bacteria were 50 %, 62 % and 82 % in the three groups. In the N2000 group, the cAMP signaling pathway, glycerophospholipid metabolites, purines and pyrimidines related to DNA/RNA synthesis, electron donor NAD+-related energy, the tricarboxylic acid (TCA) cycle and glutamate metabolism were upregulated. Therefore, influent NH4+-N at 2000 mg/L promoted glutamate metabolism to accelerate the TCA cycle, and enhanced cellular energy and advanced denitrification activity of bacteria for HN-AD. This mechanism, in turn, enhanced microbial growth and the carbon and nitrogen metabolism of bacteria for HN-AD.
Collapse
Affiliation(s)
- Lei Guo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; School of Chemical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Longshan Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shibo Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - PengYing Xiao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
20
|
Wang X, Liu N, Zeng R, Liu G, Yao H, Fang J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14959-14970. [PMID: 38285254 DOI: 10.1007/s11356-024-31901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
21
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
22
|
Zhang M, Jiao T, Chen S, Zhou W. A review of microbial nitrogen transformations and microbiome engineering for biological nitrogen removal under salinity stress. CHEMOSPHERE 2023; 341:139949. [PMID: 37648161 DOI: 10.1016/j.chemosphere.2023.139949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The osmotic stress caused by salinity exerts severe inhibition on the process of biological nitrogen removal (BNR), leading to the deterioration of biosystems and the discharge of nitrogen with saline wastewater. Feasible strategies to solve the bottleneck in saline wastewater treatment have attracted great attention, but relevant studies to improve nitrogen transformations and enhance the salt-tolerance of biosystems in terms of microbiome engineering have not been systematically reviewed and discussed. This work attempted to provide a more comprehensive explanation of both BNR and microbiome engineering approaches for saline wastewater treatment. The effect of salinity on conventional BNR pathways, nitrification-denitrification and anammox, was summarized at cellular and metabolic levels, including the nitrogen metabolic pathways, the functional microorganisms, and the inhibition threshold of salinity. Promising nitrogen transformations, such as heterotrophic nitrification-aerobic denitrification, ammonium assimilation and the coupling of conventional pathways, were introduced and compared based on advantages and challenges in detail. Strategies to improve the salt tolerance of biosystems were proposed and evaluated from the perspective of microbiome engineering. Finally, prospects of future investigation and applications on halophilic microbiomes in saline wastewater treatment were discussed.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Tong Jiao
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Shigeng Chen
- Shandong Nongda Fertilizer Sci.&Tech. Co., Ltd., Taian, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China.
| |
Collapse
|
23
|
Li Z, Wang Z, Cai S, Lin L, Huang G, Hu Z, Jin W, Zheng Y. Effects of light intensity and salinity on formation and performance of microalgal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2023; 386:129534. [PMID: 37488013 DOI: 10.1016/j.biortech.2023.129534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Photosynthetic microorganisms in microalgal-bacterial granular sludge offer advantages in wastewater treatment processes. This study examined the effects of light intensity and salinity on microalgal-bacterial granular sludge formation and microbial changes. Activated sludge was inoculated into three bioreactors and operated in batch treatment mode for 100 days under different light intensities (0, 60, and 120 μmol m-2 s-1) and staged increases in salinity concentration (0, 1, 2, and 3%). Results showed that microalgal-bacterial granular sludge was successfully formed within 30 days, and high light exposure increased algal particle stability and inorganic nitrogen removal (63, 66, 71%), while chemical oxygen demand removal (>95%) was similar across groups. High-throughput sequencing results showed that the critical algae were Chlorella and diatoms, while the main bacteria included Paracoccus and Xanthomarina with high extracellular polymeric substance production. This study aims to enhance the comprehension of MBGS processes in saline wastewater treatment under varying light intensities.
Collapse
Affiliation(s)
- Ze Li
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Si Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langli Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guanqin Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yihong Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Han X, Tang R, Liu C, Yue J, Jin Y, Yu J. Rapid, stable, and highly-efficient development of salt-tolerant aerobic granular sludge by inoculating magnetite-assisted mycelial pellets. CHEMOSPHERE 2023; 339:139645. [PMID: 37495046 DOI: 10.1016/j.chemosphere.2023.139645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Long cultivation time hinders the industrial applications of aerobic granular sludge (AGS) in treatment of hypersaline wastewater. Mycelial pellets (MPs) have been used to efficiently strengthen the flocculent sludge aggregation and accelerate the formation of AGS. However, the MPs-based AGS was easily crushed or fragmented into several small pieces/granules that brought the uncertainty and extended the transition process to form mature AGS. In this study, magnetite was used to strengthen MPs (halotolerant fungus Cladosporium tenuissimum NCSL-XY8), and co-culture and adsorption type of magnetite-assisted mycelial pellets (CMMPs and AMMPs) were prepared and used for acceleration of salt-tolerant aerobic granular sludge (SAGS) cultivation under 3% salinity conditions. Compared to inoculating MPs, the inoculation of either CMMPs or AMMPs could stably transition to mature SAGS without evident fragmentation, which obviously increased the certainty and stability of SAGS formation. Also, highly-efficient simultaneous nitrogen and carbon removal (∼98% TOC and ∼80% TN removal) could be reached in 8 days. Typically, the granules maintained perfect characteristics (D50 > 1300 μm, D10 > 350 μm, SVI30 < 45 mL/g, and SVI30/SVI5 = 1.0) during the whole cultivation/transition processes (Day 0-55) by using the inoculum of CMMPs. ITS rDNA sequencing revealed the inoculated fungus Cladosporium tenuissimum played key roles in the formation of SAGS. All the phenomena indicated the rapid, stable, and highly-efficient start-up of SAGS could be successfully realized by inoculating CMMPs.
Collapse
Affiliation(s)
- Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Rui Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
25
|
Yan L, Yin M, Jiao Y, Zheng Y, Sun L, Yang M, Miao J, Song X, Sun N. The presence of copper ions alters tetracycline removal pathway in aerobic granular sludge: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 385:129446. [PMID: 37399954 DOI: 10.1016/j.biortech.2023.129446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study investigated the removal characteristics of tetracycline (TC) in the presence of copper ions (Cu2+) in aerobic granular sludge by analyzing the TC removal pathway, composition and functional group changes of extracellular polymeric substances (EPS), and microbial community structure. The TC removal pathway changed from cell biosorption to EPS biosorption, and the microbial degradation rate of TC was reduced by 21.37% in the presence of Cu2+. Cu2+ and TC induced enrichment of denitrifying bacteria and EPS-producing bacteria by regulating the expression of signaling molecules and amino acid synthesis genes to increase the content of EPS and -NH2 groups in EPS. Although Cu2+ reduced the content of acidic hydroxyl functional groups (AHFG) in EPS, an increase in TC concentration stimulated the secretion of more AHFG and -NH2 groups in EPS. The long-term presence of TC presence of the relative abundances of Thauera, Flavobacterium and Rhodobacter and improved the removal efficiency.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Luotinng Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Nan Sun
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
26
|
Chen J, Cui YW, Huang MQ, Yan HJ, Li D. Static magnetic field increases aerobic nitrogen removal from hypersaline wastewater in activated sludge with coexistence of fungi and bacteria. BIORESOURCE TECHNOLOGY 2023; 382:129194. [PMID: 37196737 DOI: 10.1016/j.biortech.2023.129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Fungi have been found to exist in activated sludge treating saline wastewater, but their role in removing pollution has been neglected. This study explored the aerobic removal of total inorganic nitrogen (TIN) from saline wastewater under static magnetic fields (SMFs) with several strengths. Compared to the control, the aerobic removal of TIN was significantly increased by 1.47 times in 50 mT SMF, due to the increased dissimilation nitrogen removal by fungi and bacteria. Under SMF, fungal nitrogen dissimilation removal was significantly increased by 3.65 times. The fungal population size decreased, and its community composition changed significantly under SMF. In contrast, bacterial community composition and population remained relatively stable. Under SMFs, heterotrophic nitrification - aerobic denitrification bacteria Paracoccus and the fungi denitrifying Candida formed a synergistic interaction. This study elucidates the fungal role in aerobic TIN removal and provides an efficient solution to improve TIN removal from saline wastewater by SMF.
Collapse
Affiliation(s)
- Jun Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Mei-Qi Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| |
Collapse
|
27
|
Zhang W, Liu B, Sun Z, Wang T, Tan S, Fan X, Zou D, Zhuang Y, Liu X, Wang Y, Li Y, Mai K, Ye C. Comparision of nitrogen removal characteristic and microbial community in freshwater and marine recirculating aquaculture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162870. [PMID: 36933726 DOI: 10.1016/j.scitotenv.2023.162870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 05/13/2023]
Abstract
Recirculating aquaculture system (RAS) has a good prospect in aquaculture, but its nitrogen removal characteristics and microbial community changes in freshwater and marine water remain unclear. In this study, six RAS were designed and divided into freshwater group and marine water group with salinity of 0‰ and 32‰, respectively, and operated for 54 days to test changes in nitrogen (NH4+-N, NO2--N, NO3--N), extracellular polymeric substances and microbial communities. The results showed that ammonia nitrogen was rapidly reduced and almost converted to nitrate nitrogen in the freshwater RAS but to nitrite nitrogen in marine RAS. Compared with freshwater RAS, marine RAS had lower tightly bound extracellular polymeric substances and worse stability and settleability condition. 16S rRNA amplicon sequencing reflected significantly lower bacterial diversity and richness in marine RAS. Microbial community structure at phylum level showed lower relative abundance of Proteobacteria, Actinobacteria, Firmicutes, Nitrospirae, but higher abundance of Bacteroidetes under a salinity of 32‰. High salinity decreased the abundance of funtional genera (Nitrosospira, Nitrospira, Pseudomonas, Rhodococcus, Comamonas, Acidovorax, f_Comamonadaceae), which may account for nitrite accumulation and low nitrogen removal capacity in marine RAS. These findings could provide theoretical and practical basis for improving the start-up speed of high-salinity nitrification biofilm.
Collapse
Affiliation(s)
- Wenqian Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Bo Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Tingyu Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Simin Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Xin Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Danyang Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yutong Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Xinting Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yizhu Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yanyu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Kangsen Mai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China.
| |
Collapse
|
28
|
Amancio Frutuoso FK, Ferreira Dos Santos A, da Silva França LL, Mendes Barros AR, Bezerra Dos Santos A. Influence of operating regime on resource recovery in aerobic granulation systems under osmotic stress. BIORESOURCE TECHNOLOGY 2023; 376:128850. [PMID: 36898562 DOI: 10.1016/j.biortech.2023.128850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Aerobic granular sludge (AGS) systems have great potential for biopolymers recovery, especially when subjected to adverse conditions. This work aimed to study the production of alginate-like exopolymers (ALE) and tryptophan (TRY) under osmotic pressure in conventional and staggered feeding regimes. The results revealed that systems operated with conventional feed accelerated the granulation, although less resistant to saline pressures. The staggered feeding systems favored better denitrification conditions and long-term stability. Salt addition gradient increase influenced biopolymers' production. However, staggered feeding, despite decreasing the famine period, did not influence the production of resources and extracellular polymeric substances (EPS). Sludge retention time (SRT), which was not controlled, proved to be an important operational parameter with negative influences on biopolymers' production in values greater than 20 days. Thus, the principal component analysis confirmed that the production of ALE at low SRT is related to better-formed granules with good sedimentation characteristics and good AGS performances.
Collapse
Affiliation(s)
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
29
|
Wang Y, Zhu T, Wong YJ, Zhang K, Chang M. Treatment performance of multistage active biological process (MSABP) reactor for saline sauerkraut wastewater: acclimatization, optimization and improvement. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02877-2. [PMID: 37103579 DOI: 10.1007/s00449-023-02877-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The wastewater with a high concentration of organics and salt is a major contaminant in the production of sauerkraut. In this study, a multistage active biological process (MSABP) system was constructed to treat sauerkraut wastewater. The key process parameters of the MSABP system were analyzed and optimized by response surface methodology. The optimization results indicated that the most optimal removal efficiencies and removal loading rates of chemical oxygen demand (COD) and NH4+-N were 87.9%, 95.5%, 2.11 kg·m-3·d-1 and 0.12 kg·m-3·d-1, respectively, with hydraulic retention time (HRT) of 2.5 d and pH of 7.3. Meanwhile, this system could also be improved for the further treatment of COD and total nitrogen by effluent recycle and ozone oxidation. The COD and total nitrogen removal efficiencies of the modified MSABP system were 99.9% and 60.2%, respectively. In addition, the modified system could also reduce the potential harm from high concentrations of NO2--N.
Collapse
Affiliation(s)
- Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China
- DongYuan Environment S&T, 400-19, Zhihui 2 Road, Hunnan District, Shenyang, 110004, China
| | - Yong Jie Wong
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan
- Department of Bioenvironmental Design, Faculty of Bioenvironmental Science, Kyoto University of Advance Science, Kyoto, 606-8501, Japan
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, People's Republic of China
| | - Mingdong Chang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China.
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan.
| |
Collapse
|
30
|
Amancio Frutuoso FK, Ferreira Dos Santos A, da Silva França LL, Mendes Barros AR, Bezerra Dos Santos A. Influence of salt addition to stimulating biopolymers production in aerobic granular sludge systems. CHEMOSPHERE 2023; 311:137006. [PMID: 36330972 DOI: 10.1016/j.chemosphere.2022.137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The influence of salt addition to stimulating biopolymers production in aerobic granular sludge (AGS) systems was evaluated. The control systems (R1: acetate and R2: propionate) initially obtained less accumulation of mixed liquor volatile suspended solids (MLVSS), indicating that the osmotic pressure in the salt-supplemented systems (R3: acetate and R4: propionate) contributed to biomass growth. However, the salt-supplemented systems collapsed between days 110 and 130 of operation. R3 and R4 showed better performance regarding nutrients removal due to the greater abundance of nitrifying and denitrifying bacteria and phosphate-accumulating organisms. Salt also contributed to the higher production of biopolymers such as alginate-like exopolymers (ALE) per gram of volatile suspended solids (VSS) (R1: 397 mgALE∙gVSS-1, R2: 140 mgALE∙gVSS-1, R3: 483 mgALE∙gVSS-1, R4: 311 mgALE∙gVSS-1). Amino acids like tyrosine and tryptophan were better identified in extracellular polymeric substances extract from salt-operated reactors. This study brings important results in the context of resource recovery by treating saline effluents.
Collapse
Affiliation(s)
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
31
|
Ouyang L, Qiu B. Positive effects of magnetic Fe 3O 4@polyaniline on aerobic granular sludge: Aerobic granulation, granule stability and pollutants removal performance. BIORESOURCE TECHNOLOGY 2023; 368:128296. [PMID: 36370942 DOI: 10.1016/j.biortech.2022.128296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The magnetic material has been determined to have a positive effect on sludge granulation and wastewater treatment performance. In this study, the effect of magnetic Fe3O4@polyaniline (Fe3O4@PANI) on aerobic granulation, granule stability, and pollutants removal performance was evaluated by adding it into a sequencing batch reactor to cultivate aerobic granular sludge (AGS). The results indicated that the composite combined the advantages of PANI and Fe3O4 to promote the formation of AGS during the granulation period. The Fe3O4@PANI stimulated the granules to secrete extracellular polymeric substances with a higher proteins/polysaccharides ratio, thus enhancing the stability of the AGS. In addition, microbial community analysis revealed that the great performance of the AGS on denitrification and phosphorus removal could be attributed to the enrichment of denitrifying bacteria, phosphorus accumulating organisms (PAO), and denitrifying PAO by Fe3O4@PANI. Thus, Fe3O4@PANI has been demonstrated to have a positive effect on the formation and stability of AGS.
Collapse
Affiliation(s)
- Lingfeng Ouyang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
32
|
Chen R, Shuai J, Xie Y, Wang B, Hu X, Guo W, Lyu W, Zhou D, Mosa A, Wang H. Aerobic granulation and microbial community succession in sequencing batch reactors treating the low strength wastewater: The dual effects of weak magnetic field and exogenous signal molecule. CHEMOSPHERE 2022; 309:136762. [PMID: 36209862 DOI: 10.1016/j.chemosphere.2022.136762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The application of magneto-biological effects in wastewater treatment has been brought under the spotlight recently. This work explored the dual effects of magnetic field (MF) and exogenous N-hexanoyl-l-homoserine lactone (C6-HSL) on activated sludge granulation. Results showed that exposure to MF and C6-HSL obviously accelerated the aerobic granulation process and promoted the secretion of extracellular polymeric substances, especially polysaccharides, humic acid-like substances, aromatic proteins, and tryptophan-like substrates. Illumina MiSeq sequencing results indicated that the introduction of MF and C6-HSL can increase the diversity and richness of microbial community without antagonism, and the biological basis for rapid granulation process in this study was the enrichment of slow-growing bacteria Candidatus_Competibacter. Besides, the overgrowth of filamentous bacteria Thiothrix could be suppressed due to the presence of MF, improving the stabilities of aerobic granular sludge. This study provides a new understanding of the MF and C6-HSL effects on rapid aerobic granulation when treating the low-strength wastewater.
Collapse
Affiliation(s)
- Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jia Shuai
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, China
| | - Yijia Xie
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan, 430010, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Dao Zhou
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
33
|
Wang H, Hu C, Wang Y, Jin C, She Z, Guo L. Mixotrophic cultivation of Chlorella pyrenoidosa under sulfadiazine stress: High-value product recovery and toxicity tolerance evaluation. BIORESOURCE TECHNOLOGY 2022; 363:127987. [PMID: 36126847 DOI: 10.1016/j.biortech.2022.127987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfadiazine (SDZ) as a common sulfonamide antibiotic is frequently detected in wastewater, but there is little information on the high-value product recovery and toxicity tolerance evaluation of mixotrophic microalgae under SDZ stress. In this study, effects of SDZ on growth, photosynthesis, cellular damage, antioxidant capacity and intracellular biochemical components of Chlorella pyrenoidosa were investigated. Results showed that the growth of C. pyrenoidosa was inhibited by about 20% under high SDZ stress, but there was little impact on photosynthesis. Cellular damage and antioxidant capacity were evaluated using malondialdehyde (MDA) content and superoxide dismutase (SOD) activity to further explain the toxicity tolerance of mixotrophic microalgae. The SDZ stress not only increased lipid and carbohydrate content, respectively attaining to the maximum of 390.0 and 65.4 mg/L, but also improved the biodiesel quality of C. pyrenoidosa. The findings show the potential of mixotrophic microalgae for biodiesel production and wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
34
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
35
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
36
|
Song K, Xue Y, Li L, Deng M, Zhao X. Impact and microbial mechanism of continuous nanoplastics exposure on the urban wastewater treatment process. WATER RESEARCH 2022; 223:119017. [PMID: 36044798 DOI: 10.1016/j.watres.2022.119017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Contamination by nanoplastics in urban water has aroused increasing concern. The impact of nanoplastic exposure on the wastewater treatment process in the long term is still unclear. This study investigated the effect of continuous nanoplastic exposure (R1:0, R2:10, R3:100, and R4:1000 μg/L) on the nitrification and denitrification processes for over 200 days in a sequencing batch reactor (SBR). The results revealed that nanoplastic exposure does not demonstrate significant inhibition of total nitrogen removal. The ammonia oxidation rate (19.24 ± 0.01 mgN/gMLVSS/h, p < 0.05) and denitrification rate (11.78 ± 0.11 mgN/ gMLVSS/h, p < 0.05) in R4 was significantly lower than the control (R1: 0 μg/L). The maximal reaction velocities of N2O reduction (Vmax) were improved after long-term exposure to nanoplastics in high concentrations. The R3 demonstrated the highest Vmax value-six times higher than R4 and approximately 20 times higher than R1 and R2. The microbial structure largely varied with the exposure to nanoplastics, where the exposure to a high concentration largely suppressed the nitrifier and selectively enriched the denitrifier. The percentage of the top 20 genera of denitrifiers increased from 31.76% to 63.42%, and the nitrifiers decreased from an initial 12.40% to 2.83% for R4. The predominant genera were found to be Thauera, Azoarcus, and Defluviicoccus in R4 and R3 which indicated their tolerance to nanoplastics. The function prediction results indicated that the membrane transport function was significantly enhanced and the lipid metabolism function was significantly reduced in R4 as compared with the control (R1, p<0.05). This may be attributed to the adsorption of nanoplastics on bacteria. Observation under a scan electronic microscope demonstrated that the nanoplastics were firmly attached to the microbe surface and aggregated in activated sludge at high nanoplastics dosed reactor. These results deepen the understanding of the effect of nanoplastics on the urban wastewater treatment process and provide valuable information for the management of nanoplastic contamination in urban wastewater.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China.
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
37
|
Fan J, Li W, Zhang B, Shi W, Lens PNL. Unravelling the biodegradation performance and mechanisms of acid orange 7 by aerobic granular sludge at different salinity levels. BIORESOURCE TECHNOLOGY 2022; 357:127347. [PMID: 35605778 DOI: 10.1016/j.biortech.2022.127347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Azo dyes wastewater is characterized by high-salinity, however, the biodegradation performance and mechanisms of azo dyes by aerobic granular sludge (AGS) under different salinity levels are still unclear. Herein, the results showed that the reactor performance was almost unaffected at low-salinity levels (0.5%-1.0% salinity), and the removal efficiency of acid orange 7 (AO7) was increased by 2.6%-19.1%, possibly due to the excessive secretion of extracellular polymeric substances (EPS) and the enrichment of functional bacteria. Nevertheless, the microbial cell viability was negatively affected by high-salinity level (2.0% salinity), leading to the deterioration of AO7 and nutrient removal efficiencies. The AO7 removal was achieved by rapid adsorption and slow biodegradation. The biodegradation pathway indicated that AO7 was gradually mineralized in the AGS system through desulfurization, deamination, decarboxylation and hydroxylation. Altogether, this work provides an important reference for the application of AGS technology for treating saline azo dye wastewaters.
Collapse
Affiliation(s)
- Jiawei Fan
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wei Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2601 DA Delft, the Netherlands
| |
Collapse
|