1
|
Prado ERL, Rial RC. Biohydrogen production from residual biomass: The potential of wheat, corn, rice, and barley straw - recent advances. BIORESOURCE TECHNOLOGY 2025; 432:132638. [PMID: 40355006 DOI: 10.1016/j.biortech.2025.132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
This work reviews the potential of wheat, corn, rice, and barley straw for biohydrogen production, highlighting it as a promising solution for sustainable energy. We analyze the physicochemical properties of these straws, which are rich in carbohydrates and lignin, essential components for bioenergy production. Advanced pretreatment approaches, such as ultrasound, torrefaction, and electrohydrolysis, have proven effective in increasing biohydrogen yields. Research and development of fermentation technologies, such as dark fermentation and photofermentation, are crucial to improving process efficiency. Despite environmental and economic advantages, biohydrogen production faces significant challenges, including biomass conversion efficiency and economic viability. The infrastructure for the collection, transportation, and storage of agricultural residues also presents a challenge. This review explores the potential of wheat, corn, rice, and barley straw for biohydrogen production, emphasizing its role in sustainable energy generation. Biohydrogen production from agricultural residues is a viable alternative for the circular economy and environmental sustainability, contributing to waste reduction and climate change mitigation.
Collapse
Affiliation(s)
| | - Rafael Cardoso Rial
- Federal Institute of Mato Grosso do Sul, 79750-000, Nova Andradina, MS, Brazil.
| |
Collapse
|
2
|
Guo X, Wang J. Guidelines for selection and application of kinetics models in bioproduction processes. Trends Biotechnol 2024:S0167-7799(24)00320-2. [PMID: 39672764 DOI: 10.1016/j.tibtech.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Biotechnology is widely used in bioproduction to transform waste into valuable products. A comprehensive understanding of the kinetics involved is crucial for optimizing system designs. In this review, we explore various kinetics models (e.g., the Gompertz, Logistic, Cone, first-order, Monod, and Andrews models) used in describing bioproduction processes. We focus on their interpretation and applications in microbial growth, bioproduct formation, substrate consumption, and the factors influencing bioproduction processes. We provide guidelines for selecting appropriate kinetics models, emphasizing their suitability for different kinetic processes under varying conditions. Additionally, we discuss the importance of statistical parameters in evaluating model performance. This review presents a framework for applying these models to effectively predict and optimize bioproduction systems.
Collapse
Affiliation(s)
- Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Bobadilla LF, Azancot L, González-Castaño M, Ruíz-López E, Pastor-Pérez L, Durán-Olivencia FJ, Ye R, Chong K, Blanco-Sánchez PH, Wu Z, Reina TR, Odriozola JA. Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation. J Environ Sci (China) 2024; 140:306-318. [PMID: 38331510 DOI: 10.1016/j.jes.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 02/10/2024]
Abstract
The Intergovernmental Panel on Climate Change (IPCC) recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target. The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system. Renewable fuels provide long-term solutions for the transport sector, particularly for applications where fuels with high energy density are required. In addition, it helps reducing the carbon footprint of these sectors in the long-term. Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale. This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors. Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment, for this, membrane technology for upgrading syngas quality is discussed in this paper. Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues. Finally, the development of a process chain for the production of (i) methanol as an intermediate energy carrier, (ii) electricity and (iii) heat for decentralised applications based on biomass feedstock flexible gasification, gas upgrading and methanol synthesis is analysed.
Collapse
Affiliation(s)
- Luis F Bobadilla
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| | - Lola Azancot
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miriam González-Castaño
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Estela Ruíz-López
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Laura Pastor-Pérez
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Francisco J Durán-Olivencia
- Departamento de Ingeniería, Universidad Loyola Andalucía, Avda. de Las Universidades s/n, Sevilla 41704, Spain
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Katie Chong
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Paula H Blanco-Sánchez
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Zenthao Wu
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Tomás R Reina
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - José A Odriozola
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
4
|
Nizzy AM, Kannan S, Kanmani S. Utilization of plant-derived wastes as the potential biohydrogen source: a sustainable strategy for waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34839-34858. [PMID: 38744759 DOI: 10.1007/s11356-024-33610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The sustainable economy has shown a renewed interest in acquiring access to the resources required to promote innovative practices that favor recycling and the reuse of existing, unconsidered things over newly produced ones. The production of biohydrogen through dark anaerobic fermentation of organic wastes is one of the intriguing possibilities for replacing fossil-based fuels through the circular economy. At present, plant-derived waste from the agro-based industry is the main global concern. When these wastes are improperly disposed of in landfills, they become the habitat for several pathogens. Additionally, it contaminates surface water as a result of runoff, and the leachate that is created from the waste enters groundwater and degrades its quality. However, cellulose and hemicellulose-rich plant wastes from agriculture fields and agro-based industries have been employed as the most efficient feedstock since carbohydrates are the primary substrate for the synthesis of biohydrogen. To produce biohydrogen from plant-derived wastes on a large scale, it is necessary to explore comprehensive knowledge of lab-scale parameters and pretreatment strategies. This paper summarizes the problems associated with the improper management of plant-derived wastes and discusses the recent developments in dark fermentation and substrate pretreatment techniques with the goal of gaining significant insight into the biohydrogen production process. It also highlights the utilization of anaerobic digestate, which is left over after biohydrogen gas as feedstock for the development of value-added products such as volatile fatty acids (VFA), biochar, and biofertilizer.
Collapse
Affiliation(s)
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sellappa Kanmani
- Centre for Environmental Studies, Anna University, Chennai, Tamil Nadu, 625021, India
| |
Collapse
|
5
|
Wang J, Guo X. The Gompertz model and its applications in microbial growth and bioproduction kinetics: Past, present and future. Biotechnol Adv 2024; 72:108335. [PMID: 38417562 DOI: 10.1016/j.biotechadv.2024.108335] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
The Gompertz model, initially proposed for human mortality rates, has found various applications in growth analysis across the biotechnological field. This paper presents a comprehensive review of the Gompertz model's applications in the biotechnological field, examining its past, present, and future. The past of the Gompertz model was examined by tracing its origins to 1825, and then it underwent various modifications throughout the 20th century to increase its applicability in biotechnological fields. The Zwietering-modified version has proven to be a versatile tool for calculating the lag-time and maximum growth rate/quantity in microbial growth. In addition, the present applications of the Gompertz model to microbial growth kinetics and bioproduction (e.g., hydrogen, methane, caproate, butanol, and hexanol production) kinetics have been comprehensively summarized and discussed. We highlighted the importance of standardized citations and guidance on model selection. The Zwietering-modified Gompertz model and the Lay-modified Gompertz model are recommended for describing microbial growth kinetics and bioproduction kinetics, recognized for their widespread use and provision of valuable kinetics information. Finally, in response to the current Gompertz models' focus on internal mortality, the modified Makeham-Gompertz models that consider both internal/external mortality were introduced and validated for microbial growth and bioproduction kinetics with good fitting performance. This paper provides a perspective of the Gompertz model and offers valuable insights that facilitate the diverse applications of this model in microbial growth and bioproduction kinetics.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
6
|
Zhou X, Li F, Li C, Li Y, Jiang D, Zhang T, Lu C, Zhang Q, Jing Y. Effect of deep eutectic solvent pretreatment on biohydrogen production from corncob: pretreatment temperature and duration. Bioengineered 2023; 14:2252218. [PMID: 37647338 PMCID: PMC10469458 DOI: 10.1080/21655979.2023.2252218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Deep eutectic solvent pretreatment with different temperatures and durations was applied to corncob to increase hydrogen yield via photo-fermentation. The correlation of composition, enzymatic hydrolysis, and hydrogen production in pretreated corncobs, as well as energy conversion was evaluated. Deep eutectic solvent pretreatment effectively dissolved lignin, retained cellulose, and enhanced both enzymatic hydrolysis and hydrogen production. The maximum cumulative hydrogen yield obtained under a pretreatment condition of 50°C and 12 h was 677.45 mL; this was 2.72 times higher than that of untreated corncob, and the corresponding lignin removal and enzymatic reduction of sugar concentration were 79.15% and 49.83 g/L, respectively; the highest energy conversion efficiency was 12.08%. The hydrogen production delay period was shortened, and the maximum shortening time was 18.9 h. Moreover, the cellulose content in pretreated corncob was positively correlated with both reducing sugar concentration and hydrogen yield and had the strongest influence on hydrogen production.
Collapse
Affiliation(s)
- Xiaokai Zhou
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Li
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cunjie Li
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yameng Li
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Danping Jiang
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Tian Zhang
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chaoyang Lu
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Quanguo Zhang
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanyan Jing
- College of mechanical and electrical engineering, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Patel SKS, Gupta RK, Kim IW, Lee JK. Coriolus versicolor laccase-based inorganic protein hybrid synthesis for application in biomass saccharification to enhance biological production of hydrogen and ethanol. Enzyme Microb Technol 2023; 170:110301. [PMID: 37598507 DOI: 10.1016/j.enzmictec.2023.110301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
In this study, a bio-friendly inorganic protein hybrid-based enzyme immobilization system using partially purified Coriolus versicolor laccase (CvLac) was successfully applied to biomass hydrolysis for the enhancement of sugar production aimed at generating biofuels. After four days of incubation, the maximum CvLac production was achieved at 140 U/mg of total protein in the presence of inducers such as copper and wheat bran after four days of incubation. Crude CvLac immobilized through inorganic protein hybrids such as nanoflowers (NFs) using zinc as Zn3(PO4)2/CvLac hybrid NFs (Zn/CvLac-NFs) showed a maximum encapsulation yield of 93.4% and a relative activity of 265% compared to free laccase. The synthesized Zn/CvLac-NFs exhibited significantly improved activity profiles and stability compared to free enzymes. Furthermore, Zn/CvLac-NFs retained a significantly high residual activity of 96.2% after ten reuse cycles. The saccharification of poplar biomass improved ∼2-fold in the presence of Zn/CvLac-NFs, with an 8-fold reduction in total phenolics compared to the control. The Zn/CvLac-NFs treated biomass hydrolysate showed high biological hydrogen (H2) production and ethanol conversion efficiency of up to 2.68 mol/mol of hexose and 79.0% compared to the control values of 1.27 mol of H2/mol of hexose and 58.4%, respectively. The CvLac hybrid NFs are the first time reported for biomass hydrolysis, and a significant enhancement in the production of hydrogen and ethanol was reported. The synthesis of such NFs based on crude forms of diverse enzymes can potentially be extended to a broad range of biotechnological applications.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Zhang C, Chen WH, Ho SH, Zhang Y, Lim S. Comparative advantages analysis of oxidative torrefaction for solid biofuel production and property upgrading. BIORESOURCE TECHNOLOGY 2023; 386:129531. [PMID: 37473787 DOI: 10.1016/j.biortech.2023.129531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
This study performs the comparative advantage analysis of oxidative torrefaction of corn stalks to investigate the advantages of oxidative torrefaction for biochar fuel property upgrading. The obtained results indicate that oxidative torrefaction is more efficient in realizing mass loss and energy density improvement, as well as elemental carbon accumulation and surface functional groups removal, and thus leads to a better fuel property. The maximum values of relative mass loss, higher heating value, enhancement factor, and energy yield are 3.00, 1.10, 1.03, and 0.87, respectively. The relative elemental carbon, hydrogen, and oxygen content ranges are 1.30-3.10, 1.50-3.30, and 2.00-6.80, respectively. In addition, an excellent linear distribution is obtained between the comprehensive pyrolysis index and torrefaction severity index, with elemental carbon and oxygen component variation stemming from pyrolysis performance correlating to the elemental component and valance.
Collapse
Affiliation(s)
- Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Steven Lim
- Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Malaysia
| |
Collapse
|
9
|
Xiang G, Zhang Q, Li Y, Zhang X, Liu H, Lu C, Zhang H. Enhancement on photobiological hydrogen production from corn stalk via reducing hydrogen pressure in bioreactors by way of phased decompression schemes. BIORESOURCE TECHNOLOGY 2023; 385:129377. [PMID: 37385557 DOI: 10.1016/j.biortech.2023.129377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
In this project, it was verified that properly reducing the bioreactor hydrogen partial pressure (HPP) could significantly enhance the photo-fermentative hydrogen production (PFHP) by corn stalk. The maximal cumulative hydrogen yield (CHY) of 82.37 mL/g was obtained under full decompression to 0.4 bar, which was 35% higher than that without decompression. To increase CHY and save the pressure control cost, 12-hour, 24-hour and 36-hour decompression schemes were provided, and the optimal decompression phase in fermentation under each scheme was investigated. The 12-hour decompression scheme was suitable for 24-36 h of fermentation; the 24-hour decompression scheme implemented within 12-36 h of fermentation had a more desirable CHY; when adopting the 36-hour decompression scheme, operation during 12-48 h yielded a CHY of 81.70 mL/g that approximated whole process decompression. The strategies of decompression at the appropriate phase of fermentation were innovative, which offered a new option for optimizing PFHP economically.
Collapse
Affiliation(s)
- Guanning Xiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Xueting Zhang
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Zhang Q, Yang J, Zhang T, Shui X, Zhang H, Chen Z, He X, Lei T, Jiang D, Elgorban AM, Syed A, Kumar Solanki M. Pretreatment of Arundo donax L. for photo-fermentative biohydrogen production by ultrasonication and ionic liquid. BIORESOURCE TECHNOLOGY 2023; 377:128904. [PMID: 36933572 DOI: 10.1016/j.biortech.2023.128904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Combined pretreatment methods were assumed to further enhance photo-fermentative biohydrogen production (PFHP) from lignocellulosic biomass. For this purpose, an ultrasonication assisted ionic liquid pretreatment was applied to Arundo donax L. biomass for PFHP. The optimal condition for the combined pretreatment was 16 g/L of 1-Butyl-3-methylimidazolium Hydrogen Sulfate ([Bmim]HSO4) combined with ultrasonication at a solid to liquid ratio (SLR) of 1:10 for 1.5 h under 60 °C. Under this condition, the maximum delignification of 22.9 % was obtained, in addition, the hydrogen yield (HY) and energy conversion efficiency (ECE) were enhanced by 1.5-fold and 46.4 % (p < 0.05) compared to untreated biomass, respectively. Moreover, heat map analysis was performed to evaluate the correlation between pretreatment conditions and corresponding results, suggesting pretreatment temperature had the strongest (absolute value of Pearson's r was 0.97) linear correlation with HY. Combined multiple energy production approaches might be useful for further improved ECE.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jiabin Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tian Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xuenan Shui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhou Chen
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xun He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tingzhou Lei
- Changzhou University, Changzhou 213164, PR China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Guo Y, Zhao Y, Gao Y, Wang G, Zhao Y, Zhang J, Li Y, Wang X, Liu J, Chen G. Low acyl gellan gum immobilized Lactobacillus bulgaricus T15 produce D-lactic acid from non-detoxified corn stover hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:43. [PMID: 36915198 PMCID: PMC10009946 DOI: 10.1186/s13068-023-02292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Straw biorefinery offers economical and sustainable production of chemicals. The merits of cell immobilization technology have become the key technology to meet D-lactic acid production from non- detoxified corn stover. In this paper, Low acyl gellan gum (LA-GAGR) was employed first time for Lactobacillus bulgaricus T15 immobilization and applied in D-lactic acid (D-LA) production from non-detoxified corn stover hydrolysate. Compared with the conventional calcium alginate (E404), LA-GAGR has a hencky stress of 82.09 kPa and excellent tolerance to 5-hydroxymethylfurfural (5-HMF), ferulic acid (FA), and vanillin. These features make LA-GAGR immobilized T15 work for 50 days via cell-recycle fermentation with D-LA yield of 2.77 ± 0.27 g/L h, while E404 immobilized T15 can only work for 30 days. The production of D-LA from non-detoxified corn stover hydrolysate with LA-GAGR immobilized T15 was also higher than that of free T15 fermentation and E404 immobilized T15 fermentation. In conclusion, LA-GAGR is an excellent cell immobilization material with great potential for industrial application in straw biorefinery industry.
Collapse
Affiliation(s)
- Yongxin Guo
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Yuru Zhao
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Yuan Gao
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Jilin, 130118, China
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Hubei, 430000, China
- Sericultural Research Institute of Jilin Province, Jilin, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China.
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Jilin, 130118, China.
| | - Yixin Zhao
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Jiejing Zhang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Yanli Li
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Hubei, 430000, China
| | - Juan Liu
- Sericultural Research Institute of Jilin Province, Jilin, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Jilin, 130118, China
| |
Collapse
|
12
|
Mohanakrishna G, Modestra JA. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128386. [PMID: 36423757 DOI: 10.1016/j.biortech.2022.128386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Bioenergy production is the most sought-after topics at the crunch of energy demand, climate change and waste generation. In view of this, lignocellulosic biomass (LCB) rich in complex organic content has the potential to produce bioenergy in several forms following the pretreatment. Hydrothermal pretreatment that employs high temperatures and pressures is gaining momentum for organics recovery from LCB which can attain value-addition. Diverse bioprocesses such as dark fermentation, anaerobic digestion etc. can be utilized following the pretreatment of LCB which can result in biohydrogen and biomethane production. Besides, integration approaches for LCB utilization that enhance process efficiency and additional products such as biohythane production as well as application of solid residue obtained after LCB pretreatment were discussed. Importance of hydrothermal pretreatment as one of the suitable strategies for LCB utilization is emphasized suggesting its future potential in large scale energy recovery.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|