1
|
Rodríguez-Iglesias P, Baltrusch KL, Díaz-Reinoso B, López-Álvarez M, Novoa-Carballal R, González P, González-Novoa A, Rodríguez-Montes A, Kennes C, Veiga MC, Torres MD, Domínguez H. Hydrothermal extraction of ulvans from Ulva spp. in a biorefinery approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175654. [PMID: 39168316 DOI: 10.1016/j.scitotenv.2024.175654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
A simple cascade process based on the hydrothermal fractionation of Ulva spp. biomass was proposed. Considering the overall extraction yields (50 %), ulvan recovery (23 %), and ulvan composition, structural, mechanical and cytotoxic properties, the selected optimal final heating temperature was 160 °C. Ethanol precipitation provided the highest ulvan recovery yields but choline chloride precipitated ulvans showed stronger mechanical properties, G´ moduli 1.5·104 Pa and 3·104 Pa for ethanol and for choline chloride, respectively. Both products were safe on NCTC 929 mouse fibroblasts and after a cooling stage, formed films without requiring any additives. From the ulvan-free liquid fraction, one product with 43 % (wt, d.b.) phenolics and moderate antiradical properties and a byproduct containing nutrients and minerals were separated. The methane potential of the corresponding residual solids was influenced by the hydrothermal heating temperature and was doubled compared to than for the untreated seaweed biomass (60 mL/g VS). This scheme could be also applied to the wet algal biomass, in a chemical free alternative to provide ready to use ulvan biopolymers, bioactives, nutrients, salts and biogas, conforming a biorefinery approach.
Collapse
Affiliation(s)
- Pablo Rodríguez-Iglesias
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - Kai L Baltrusch
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - Beatriz Díaz-Reinoso
- CITI-University of Vigo, Parque Tecnolóxico de Galicia, Rúa Galicia n° 2, 32900 Ourense, Spain
| | | | - Ramón Novoa-Carballal
- CINBIO, Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Pontevedra, Spain
| | - Pío González
- CINTECX, Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain
| | - Alexandre González-Novoa
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008, Spain
| | - Andrea Rodríguez-Montes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008, Spain
| | - María D Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| |
Collapse
|
2
|
Gracia J, Acevedo O, Acevedo P, Mosquera J, Montenegro C, Cabeza I. Statistical modeling and optimization of volatile fatty acids production by anaerobic digestion of municipal wastewater sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34091-2. [PMID: 39198346 DOI: 10.1007/s11356-024-34091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/19/2024] [Indexed: 09/01/2024]
Abstract
Obtaining value-added products from renewable resources is limited by the lack of specific operating conditions optimized for the physico-chemical characteristics of the biomass and the desired end product. A mathematical model and statistical optimization were developed for the production of volatile fatty acids (VFAs) by anaerobic digestion of municipal sewage sludge. The experimental tests were carried out in triplicate and investigated a wide range of conditions: pH 9.5, 10.5, and 11.5; temperatures 25 °C, 35 °C, 45 °C, and 55 °C; primary sludge with organic loading (OL) of 10 and 14 g VS (volatile solids); and digested sludge with 4 and 6 g VS. Subsequently, a statistical search was performed to obtain optimal production conditions, then a statistical model of VFA production was developed and the optimal conditions were validated at pilot plant scale. The maximum VFA concentration predicted was 6975 mg COD (chemical oxygen demand)/L using primary sludge at 25 °C, initial OL of 14 g VS, and pH 10.5. The obtained third-degree model (r2 = 0.83) is a powerful tool for bioprocess scale-up, offering a promising avenue for sustainable waste management and biorefinery development.
Collapse
Affiliation(s)
- Jeniffer Gracia
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Oscar Acevedo
- Faculty of Engineering, Design, and Innovation, Politécnico Grancolombiano, 110231, Bogotá, Colombia
| | | | - Jhessica Mosquera
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Carlos Montenegro
- Universidad Distrital Francisco José de Caldas, 110221, Bogotá, Colombia
| | - Ivan Cabeza
- Energy, Materials and Environment Laboratory, Faculty of Engineering, Universidad de La Sabana, Autopista Norte, Campus Universitario Puente del Común, Km 7, 250001, Chía, Colombia.
| |
Collapse
|
3
|
Huy Hoang Phan Q, Pham Phan T, Khanh Thinh Nguyen P. Mathematical modeling of dark fermentative hydrogen and soluble by-products generations from water hyacinth. BIORESOURCE TECHNOLOGY 2023:129266. [PMID: 37271462 DOI: 10.1016/j.biortech.2023.129266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The production of hydrogen and soluble metabolite products from water hyacinth via dark fermentation was modeled. The model was built on the assumption that the substrate exists in two forms (i.e., soluble and particulate) and undergoes two stages (i.e., hydrolysis and acidogenesis) in the dark fermentation process. The modified Michaelis-Menten and surface-limiting models were applied to describe the hydrolysis of soluble and particulate forms, respectively. Meanwhile, the acidogenesis stage was modeled based on the multi-substrate-single-biomass model. The effects of temperature, pH, and substrate concentration were integrated into the model to increase flexibility. As a result, the model prediction agreed with the experimental and literature data of water hyacinth-fed dark fermentation, with high coefficient of determination values of 0.92 - 0.97 for hydrogen and total soluble metabolite products. These results indicate that the proposed model could be further applied to dark fermentation's downstream and hybrid processes using water hyacinth and other substrates.
Collapse
Affiliation(s)
- Quang Huy Hoang Phan
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Thi Pham Phan
- Faculty of Food Science and Engineering, Lac Hong University, 10 Huynh Van Nghe Street, Buu Long Ward, Bien Hoa City, Dong Nai Province, Viet Nam
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
4
|
Kovalev AA, Kovalev DA, Zhuravleva EA, Laikova AA, Shekhurdina SV, Vivekanand V, Litti YV. Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. BIORESOURCE TECHNOLOGY 2023; 376:128919. [PMID: 36934902 DOI: 10.1016/j.biortech.2023.128919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The performance and kinetics response of thermophilic semi-continuous dark fermentation (DF) of simulated complex carbohydrate-rich waste was investigated at various hydraulic retention times (HRT) (2, 2.5, and 3 d) and compared with data obtained from biochemical hydrogen potential assay (BHP). A culture of Thermoanaerobacterium thermosaccharolyticum was used as the inoculum and dominated both in BHP and semi-continuous reactor. Both the modified Gompertz and first-order models described the DF kinetics well (R2 = 0.97-1.00). HRT of 2.5 d was found to be optimal in terms of maximum hydrogen production rate and hydrogen potential, which were 3.97 and 1.26 times higher, respectively, than in BHP. The hydrolysis constant was highest at HRT of 3 d and was closest to the value obtained in the BHP. Overall, BHP has been shown to be a useful tool for predicting H2 potential and the hydrolysis constant, while the maximum H2 production rate is greatly underestimated.
Collapse
Affiliation(s)
- Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia
| | - Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Alexandra A Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| |
Collapse
|
5
|
Cao J, Duan G, Lin A, Zhou Y, You S, Wong JWC, Yang G. Metagenomic insights into the inhibitory mechanisms of Cu on fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2023; 380:129080. [PMID: 37094620 DOI: 10.1016/j.biortech.2023.129080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Cu is widely present in the feedstocks of dark fermentation, which can inhibit H2 production efficiency of the process. However, current understanding on the inhibitory mechanisms of Cu, especially the microbiological mechanism, is still lacking. This study investigated the inhibitory mechanisms of Cu2+ on fermentative hydrogen production by metagenomics sequencing. Results showed that the exposure to Cu2+ reduced the abundances of high-yielding hydrogen-producing genera (e.g. Clostridium sensu stricto), and remarkably down-regulated the genes involved in substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to significant inhibition on the process performances. The H2 yield was reduced from 1.49 mol H2/mol-glucose to 0.59 and 0.05 mol H2/mol-glucose upon exposure to 500 and 1000 mg/L of Cu2+, respectively. High concentrations of Cu2+ also reduced the rate of H2 production and prolonged the H2-producing lag phase.
Collapse
Affiliation(s)
- Jinman Cao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
A Review of Biohydrogen Production from Saccharina japonica. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Saccharina japonica (known as Laminaria japonica or Phaeophyta japonica), one of the largest macroalgae, has been recognized as food and medicine for a long time in some Asian countries, such as China, South Korea, Japan, etc. In recent years, S. japonica has also been considered the most promising third-generation biofuel feedstock to replace fossil fuels, contributing to solving the challenges people face regarding energy and the environment. In particular, S. japonica-derived biohydrogen (H2) is expected to be a major fuel source in the future because of its clean, high-yield, and sustainable properties. Therefore, this review focuses on recent advances in bio-H2 production from S. japonica. The cutting-edge biological technologies with suitable operating parameters to enhance S. japonica’s bio-H2 production efficiency are reviewed based on the Scopus database. In addition, guidelines for future developments in this field are discussed.
Collapse
|
7
|
Artificial intelligence-based modeling and optimization of microbial electrolysis cell-assisted anaerobic digestion fed with alkaline-pretreated waste-activated sludge. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Sung YJ, Yu BS, Yang HE, Kim DH, Lee JY, Sim SJ. Microalgae-derived hydrogen production towards low carbon emissions via large-scale outdoor systems. BIORESOURCE TECHNOLOGY 2022; 364:128134. [PMID: 36252755 DOI: 10.1016/j.biortech.2022.128134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen as a clean fuel is receiving attention because it generates only water and a small amount of nitrogen oxide upon combustion. Biohydrogen production using microalgae is considered to be a highly promising carbon-neutral technology because it can secure renewable energy while efficiently reducing CO2 emissions. However, previous studies have mainly focused on improving the biological performance of microalgae; these approaches have struggled to achieve breakthroughs in commercialization because they do not heavily consider the complexity of the entire production process with microalgae, including large-scale cultivation, biomass harvest, and biomass storage. This work presents an in-depth analysis of the state-of-the-art technologies focused on large-scale cultivation systems with efficient downstream processes. Considering the individual processes of biohydrogen production, strategies are discussed to minimize carbon emissions and improve productivity simultaneously. A comprehensive understanding of microalgae-derived biohydrogen production suggests future directions for realizing environmental and economic sustainability.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Thu Ha Tran T, Khanh Thinh Nguyen P. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2022; 357:127340. [PMID: 35598775 DOI: 10.1016/j.biortech.2022.127340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, hydrogen (H2) production from water hyacinth (WH) was enhanced by the integration of the ultrasonic-assisted alkaline (UAA) pretreatment, dark fermentation (DF), and microbial electrolysis cell (MEC). The results showed that UAA pretreatment improved around 350% in H2 production in the DF stage and nearly 400% in the whole process compared to un-pretreated. The H2 yield in the DF stage reached the maximum value of 110.4 mL/g-VS at a WH concentration of 20 g-TS/L. However, high concentrations of co-produced soluble metabolite products (SMPs) and suspended solid in DF effluent adversely affected the efficiency of the MEC stage. Consequently, a WH concentration of 5 g-TS/L was optimal for the UAA-DF-MEC process that achieved the highest H2 yield of 565.8 mL/g-VS. It suggests that other auxiliary processes (e.g., dilution, centrifugation, effective methanogen inhibition, etc.) need to be developed to further improve the H2 production from WH via the UAA-DF-MEC process.
Collapse
Affiliation(s)
- Thi Thu Ha Tran
- Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, Tan Binh District, Ho Chi Minh City, Viet Nam
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|