1
|
Habarakada Liyanage TU, Dada OI, Abeysinghe S, Liu H, Yu L, Chen S. Digestibility and fate of biodegradable plastic mulch films in thermophilic anaerobic digestion. CHEMOSPHERE 2025; 379:144411. [PMID: 40306159 DOI: 10.1016/j.chemosphere.2025.144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Recent developments in biodegradable mulches (BDMs) provide a sustainable and eco-friendly alternative to persistent polyethylene (PE) mulches, addressing plastic pollution and disposal challenges; however, BDM degradation requires an extended period for complete mineralization under natural in-situ conditions. This study investigates the potential of thermophilic anaerobic digestion (AD) as an alternative to the in-situ degradation of BDMs. Two commercially available BDMs were evaluated in batch AD, initial characterization, and post-AD analysis of digestate were carried out for remaining fragments and liquid. In the TGA, a major weight loss in both BDMs at 400 °C indicated a high polybutylene-adipate-co-terephthalate (PBAT) content (>70 %), along with biobased polymers. After 160 days of digestion, cumulative methane yields were 226 and 129 mL CH4/g VS for BDM Samples 1 and 2, respectively. These values correspond to 36 % and 25% of their respective theoretical methane potentials (628 and 508 mL CH4/g VS) due to the low biodegradability of PBAT. FTIR analysis of BDM fragments showed similar spectral features with some shifts and new peaks (OH group) due to hydrolysis. The biomethane potential (BMP) tests showed no accumulation of volatile fatty acids (VFA), but soluble chemical oxygen demand (sCOD) increased due to partial biodegradation. Further analysis detected different monomers of PBAT, such as 1,4-benzenedicarboxylic acid, in the liquid phase of the digestate. This suggests that while most of the particles disintegrated (>98 % size reduction), the thermophilic anaerobic microorganisms were not able to mineralize BDMs completely, thus requiring further treatment.
Collapse
Affiliation(s)
- T U Habarakada Liyanage
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Oluwatunmise Israel Dada
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Shalini Abeysinghe
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Hang Liu
- Composite Materials and Engineering Center, Washington State University, Pullman, WA, 99164, USA; Apparel, Merchandising, Design and Textiles, Washington State University, Pullman, WA, 99164, USA
| | - Liang Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA; Department of Agricultural and Biological Engineering, School of Engineering and Technology, Kentucky State University, Frankfort, KY, 40601, USA.
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA.
| |
Collapse
|
2
|
Olaya-Rincon M, Serra-Rada J, Silva CD, Barcelona P, Dosta J, Astals S, Martínez M. Thermophilic anaerobic biodegradation of commercial polylactic acid products. BIORESOURCE TECHNOLOGY 2025; 425:132296. [PMID: 40015530 DOI: 10.1016/j.biortech.2025.132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study examines the anaerobic biodegradability of six commercial polylactic acid (PLA) products under thermophilic conditions. All products showed similar methane yields of 507 ± 24 L CH4 kg-1 VS, with an estimated biodegradability of 100 %. However, these products showed a slow degradation rate, with an average kinetic constant of 0.008 d-1. Products degradation was monitored by recovering samples from tests after 30, 60 and 90 days. After 30 days, all products showed changes in colour and fragmentation, that were more pronounced after 60 and 90 days. Degradation was also evident by the reduction of the carbonyl index and a decrease in the melting temperature. Nonetheless, differences in crystallinity, thermal properties, thickness and additives did not affect methane yield or degradation rate. Despite being fully biodegradable, biodegradation at full-scale was estimated at < 20 %, limiting the feasibility of anaerobic digestion as an end-of-life management option and highlighting the need for improved waste management strategies.
Collapse
Affiliation(s)
- Mario Olaya-Rincon
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Joaquim Serra-Rada
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Cristopher Da Silva
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Pol Barcelona
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain.
| | - Mònica Martínez
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona 08028 Barcelona, Spain
| |
Collapse
|
3
|
Elboghdady HGE, Clagnan E, De Franceschi V, Cucina M, Dell'Orto M, De Nisi P, Goglio A, Adani F. Microbial acclimation of thermophilic anaerobic digestate enhances biogas production and biodegradation of polylactic acid in combination with the organic fraction of municipal solid waste (OFMSW). WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114895. [PMID: 40393274 DOI: 10.1016/j.wasman.2025.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Bioplastics are a promising alternative to conventional plastics. Their anaerobic co-digestion with the organic fractions of municipal solid waste (OFMSW) is an ideal end-of-life scenario reducing pre-treatment and increasing efficiency and biogas production. Bioplastic degradation is limited under anaerobic digestion (AD) as it requires longer hydraulic retention time (HRT) compared to industrial OFMSW plants' HRTs. Here, three AD runs were conducted sequentially under thermophilic conditions to investigate the effects of inoculum acclimation on enhancing the degradation of polylactic acid (PLA) and OFMSW in mono and co-digestion (PLA + OFMSW). In PLA mono-digestion, microbial acclimation increased biogas production up to +152 % (831 ± 11 NL kgVS-1) and biogas production rate from 27 to 47 NL kgVS-1 d-1 with a 5-day reduction of the lag phase. This improvement was associated with the enrichment of the PLA-degrading bacteria Tepidanaerobacter. In PLA + OFMSW co-digestion, biogas production increased of +69 % (827 ± 69 NL kgVS-1), the biogas production rate increased to 58 NL kgVS-1 d-1 with a lag phase reduction of 7 days. An increase of both protein degraders (Halocella and Acetomicrobium) and Tepidanaerobacter was achieved. In OFMSW mono-digestion, acclimation increased cumulative biogas production to + 22 % (719 ± 25 NL kgVS-1) with no biogas production rate and lag phase modifications, indicating an already adapted community. A variance in Methanothermobacter and Metanoculleus abundances across treatments was linked to different biomethane productions. Microbial acclimation is a valid and economical approach to enhance biogas production and PLA degradability, alone or with OFMSW, further reducing HRTs enabling sustainable bioplastic and OFMSW waste management.
Collapse
Affiliation(s)
- Hager Galal Elsayed Elboghdady
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Elisa Clagnan
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| | - Veronica De Franceschi
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Mirko Cucina
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via della Madonna Alta 128, 06128 Perugia, Italy
| | - Marta Dell'Orto
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Patrizia De Nisi
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Andrea Goglio
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli Studi di Milano), Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
4
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T, Bracciale MP, Gabrielli S, Sarasini F, Tirillò J. Anaerobic Biodegradation of Polylactic Acid-Based Items: A Specific Focus on Disposable Tableware Products. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1186. [PMID: 40077410 PMCID: PMC11902089 DOI: 10.3390/ma18051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The viability of anaerobic degradation treatment as an end-of-life option for commercial disposable bioplastic tableware, typically certified as compostable, was assessed. Two types of polylactic acid-based items were selected and tested under mesophilic conditions (38 °C) for 155 days, until reaching a plateau. Advanced chemical characterization of the products was performed with a combination of analytical techniques, i.e., microscopy, spectroscopy, and thermogravimetry. Two methods for calculating the biodegradation degree of the products were discussed and compared, using the biogas generated in the test and the total organic carbon (TOC) removal, respectively. The method based on TOC removal, resulting in a biodegradation degree ranging from 80.5% to 88.9%, was considered to more accurately describe the process. Given the complexity of assessing the biodegradation of a bioplastic product, an effort was made to derive correlations among the chemical-physical composition of the product, the biodegradation conditions, and the biodegradation yields/kinetics, with an aim to describe the process comprehensively. Statistical tools were also applied to derive additional considerations regarding the influence of the polymeric blend and digestion parameters on the biodegradation of bioplastic products. The identified data clusters, which were found to be grouped by the digestion temperature and the type of bioplastic, indicated specific biodegradation features of the investigated materials.
Collapse
Affiliation(s)
- Marica Falzarano
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Alessandra Polettini
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Raffaella Pomi
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Andreina Rossi
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Tatiana Zonfa
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Maria Paola Bracciale
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.P.B.); (F.S.); (J.T.)
| | - Serena Gabrielli
- School of Science and Technology, Chemistry Division, Via Madonna delle Carceri (ChIP), University of Camerino, 62032 Camerino, Italy;
| | - Fabrizio Sarasini
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.P.B.); (F.S.); (J.T.)
| | - Jacopo Tirillò
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.P.B.); (F.S.); (J.T.)
| |
Collapse
|
5
|
Vargas-Estrada L, García-Depraect O, Zimmer J, Muñoz R. Analysis of biological treatment technologies, their present infrastructures and suitability for biodegradable food packaging - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124395. [PMID: 39933383 DOI: 10.1016/j.jenvman.2025.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been an increased demand for biodegradable plastics in the food packaging industry, especially for highly food soiled packaging items containing food/beverage solids that will not be recycled using a non-biological process. However, the increased usage of those materials have also raised concerns and confusion, as a major part of these biodegradable plastics are not effectively separated nor recycled. The lack of acceptance in recycling facilities, related to confusion with their conventional polymers counterparts, as well as short retention times of recycling facilities, often incompatible with the degradation kinetics of biodegradable plastics, stand as the major drawbacks for bioplastics treatment. Additionally, the presence of incompletely biodegraded bioplastics during biological treatments or in the final products i.e. compost or digestate, could lead to process failure or limit the commercialization of the compost. This work critically reviews the fundamentals of the biological treatments, anaerobic digestion and composting processes, and discusses the current strategies to improve their performance. In addition, this work summarizes the state-of-the-art knowledge and the impact of bioplastics on full-scale treatment plants. Finally, an overview of the current installed treatment capacity is given to show the areas of opportunity that can be improved and exploited to achieve a better waste management of biodegradable plastics.
Collapse
Affiliation(s)
- Laura Vargas-Estrada
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Octavio García-Depraect
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Johannes Zimmer
- Nestlé Research, Société des Produits Nestlé S.A., Route Du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
6
|
Liu W, Wang S, He S, Shi Y, Hou C, Song Y, Zhang T, Zhang Y, Shen Z. Proteinase K impact on anaerobic co-digestion of modified biodegradable plastic and food waste: Step-by-step analysis with microorganism. BIORESOURCE TECHNOLOGY 2025; 418:131984. [PMID: 39675641 DOI: 10.1016/j.biortech.2024.131984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
This study was designed to explore the key impact of Proteinase K (PK) on every step of anaerobic co-digestion. The results of step-by-step experiments indicated that PK promoted the hydrolysis of biodegradable plastic by initiating self-hydrolysis reactions, directly promoting the hydrolysis step of anaerobic co-digestion. Subsequently, PK indirectly promoted the acidogenesis and acetogenesis steps by impacting the proliferation of acid-producing bacteria. Besides, it could also hydrolyze PLA. Thus, the lactic acid content peaked at 255.7 mg/L on the 5th day, representing an increase of 35.9 % compared to the condition without PK. Finally, PK indirectly promoted the methanogenesis step through its impact on the composition of methanogenic bacteria. This led to more food waste being digested into methane, 41.5 % compared to the condition without PK. This work served as an essential foundation for advancing the application of PK modified BP as a replacement for traditional plastics.
Collapse
Affiliation(s)
- Wenjie Liu
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Shizhuo Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Songting He
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Yang Shi
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yuanbo Song
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Tao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yalei Zhang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 201804, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 201804, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Fang S, Li Y, Wang F, Wei Z, Cheng S, Liu X, Zhao Y, Cao J, Cheng Y, Luo J. Promoting effects of bioplastics and sludge anaerobic co-fermentation for carboxylates production with pH regulation: Insights into the plastic structure, microbial metabolic traits, and adaptive mechanism. BIORESOURCE TECHNOLOGY 2024; 413:131564. [PMID: 39362348 DOI: 10.1016/j.biortech.2024.131564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Biodegradable plastics (BPs) are presenting new challenges for their reutilization. This work found that volatile fatty acids (VFAs) production by co-fermentation of BPs with waste activated sludge (WAS) reached 4-37 times of the WAS fermentation alone, which was further amplified by pH regulation (especially alkaline regulation). Moreover, the VFAs composition is highly associated with BPs category. By contrast, the traditional plastic showed a limited effect on the VFAs yield and composition. Alkaline regulation enhanced the breakdown of BPs' ester bonds and boosted WAS disintegration, increasing bioavailable substrates. The hydrolytic-acidogenic anaerobes (i.e., Serpentinicella and Proteiniclasticum) and the major metabolic processes participated in the transformation of BPs and WAS to VFAs were upregulated under alkaline conditions. Further exploration unveiled that quorum sensing and peptidoglycan synthesis played important roles in counteracting alkaline stress and maintaining microbial activity for effective VFAs generation. The works demonstrated the effectiveness of pH-regulated anaerobic co-fermentation for BPs valorization.
Collapse
Affiliation(s)
- Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zihao Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xuran Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
8
|
Lara-Topete GO, Castanier-Rivas JD, Bahena-Osorio MF, Krause S, Larsen JR, Loge FJ, Mahlknecht J, Gradilla-Hernández MS, González-López ME. Compounding one problem with another? A look at biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173735. [PMID: 38857803 DOI: 10.1016/j.scitotenv.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Environmental concerns about microplastics (MPs) have motivated research of their sources, occurrence, and fate in aquatic and soil ecosystems. To mitigate the environmental impact of MPs, biodegradable plastics are designed to naturally decompose, thus reducing the amount of environmental plastic contamination. However, the environmental fate of biodegradable plastics and the products of their incomplete biodegradation, especially micro-biodegradable plastics (MBPs), remains largely unexplored. This comprehensive review aims to assess the risks of unintended consequences associated with the introduction of biodegradable plastics into the environment, namely, whether the incomplete mineralization of biodegradable plastics could enhance the risk of MBPs formation and thus, exacerbate the problem of their environmental dispersion, representing a potentially additional environmental hazard due to their presumed ecotoxicity. Initial evidence points towards the potential for incomplete mineralization of biodegradable plastics under both controlled and uncontrolled conditions. Rapid degradation of PLA in thermophilic industrial composting contrasts with the degradation below 50 % of other biodegradables, suggesting MBPs released into the environment through compost. Moreover, degradation rates of <60 % in anaerobic digestion for polymers other than PLA and PHAs suggest a heightened risk of MBPs in digestate, risking their spread into soil and water. This could increase MBPs and adsorbed pollutants' mobilization. The exact behavior and impacts of additive leachates from faster-degrading plastics remain largely unknown. Thus, assessing the environmental fate and impacts of MBPs-laden by-products like compost or digestate is crucial. Moreover, the ecotoxicological consequences of shifting from conventional plastics to biodegradable ones are highly uncertain, as there is insufficient evidence to claim that MBPs have a milder effect on ecosystem health. Indeed, literature shows that the impact may be worse depending on the exposed species, polymer type, and the ecosystem complexity.
Collapse
Affiliation(s)
- Gary Ossmar Lara-Topete
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Juan Daniel Castanier-Rivas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - María Fernanda Bahena-Osorio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joshua R Larsen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Frank J Loge
- Department of Civil & Environmental Engineering, University of California - Davis, Davis, CA, United States of America; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Martín Esteban González-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico.
| |
Collapse
|
9
|
García-Depraect O, Martínez-Mendoza LJ, Aragão Börner R, Zimmer J, Muñoz R. Biomethanization of rigid packaging made entirely of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Mono- and co-digestion tests and microbial insights. BIORESOURCE TECHNOLOGY 2024; 408:131180. [PMID: 39098356 DOI: 10.1016/j.biortech.2024.131180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
This study evaluates the anaerobic mesophilic mono- and co-digestion of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) plastic bottles as a proxy for rigid packaging materials. Initial tests showed a 97.3 ± 0.2 % reduction in weight and an observable alteration in the surface (thinning, color fading and pitting) of the PHBH bottles after eight weeks. Subsequent tests showed that PHBH squares (3 × 3 cm) produced 400 NmL-CH4/g-VSfed, at a slower rate compared to powdered PHBH but with similar methane yield. Co-digestion experiments with food waste, swine manure, or sewage sludge showed successful digestion of PHBH alongside organic waste (even at a high bioplastic loading of 20 % volatile solids basis), with methane production comparable to or slightly higher than that observed in mono-digestion. Molecular analyses suggested that the type of co-substrate influenced microbial activity and that methane production was mainly driven by hydrogenotrophic methanogenesis. These results suggest the potential for integrating rigid PHBH packaging into anaerobic digesters.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A., Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Johannes Zimmer
- Nestlé Research, Société des Produits Nestlé S.A., Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
10
|
Liu W, Wang S, He S, Shi Y, Hou C, Jiang X, Song Y, Zhang T, Zhang Y, Shen Z. Enzyme modified biodegradable plastic preparation and performance in anaerobic co-digestion with food waste. BIORESOURCE TECHNOLOGY 2024; 401:130739. [PMID: 38670291 DOI: 10.1016/j.biortech.2024.130739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
A modified biodegradable plastic (PLA/PBAT) was developed by through covalent bonding with proteinase K, porcine pancreatic lipase, or amylase, and was then investigated in anaerobic co-digestion mixed with food waste. Fluorescence microscope validated that enzymes could remain stable in modified the plastic, even after co-digestion. The results of thermophilic anaerobic co-digestion showed that, degradation of the plastic modified with Proteinase K increased from 5.21 ± 0.63 % to 29.70 ± 1.86 % within 30 days compare to blank. Additionally, it was observed that the cumulative methane production increased from 240.9 ± 0.5 to 265.4 ± 1.8 mL/gVS, and the methane production cycle was shortened from 24 to 20 days. Interestingly, the kinetic model suggested that the modified the plastic promoted the overall hydrolysis progression of anaerobic co-digestion, possibly as a result of the enhanced activities of Bacteroidota and Thermotogota. In conclusion, under anaerobic co-digestion, the modified the plastic not only achieved effective degradation but also facilitated the co-digestion process.
Collapse
Affiliation(s)
- Wenjie Liu
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shizhuo Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China; Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
| | - Songting He
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yang Shi
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China; Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
| | - Xintong Jiang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yuanbo Song
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Tao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China; Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
| | - Yalei Zhang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China; Key Laboratory of Rural Toilet and SewageTreatment Technology, Ministry of Agricultureand Rural Affairs, Tongji University, Shanghai 201804, P. R. China; Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P. R. China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China; Key Laboratory of Rural Toilet and SewageTreatment Technology, Ministry of Agricultureand Rural Affairs, Tongji University, Shanghai 201804, P. R. China; Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China.
| |
Collapse
|
11
|
Lee ES, Park SY, Kim CG. Comparison of anaerobic digestion of starch- and petro-based bioplastic under hydrogen-rich conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:133-145. [PMID: 38194798 DOI: 10.1016/j.wasman.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
To identify an economically viable waste management system for bioplastics, thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) were anaerobically digested under hydrogen (H2)/carbon dioxide (CO2) and nitrogen (N2) gas-purged conditions to compare methane (CH4) production and biodegradation. Regardless of the type of bioplastics, CH4 production was consistently higher with H2/CO2 than with N2. The highest amount of CH4 was produced at 307.74 mL CH4/g volatile solids when TPS digested with H2/CO2. A stepwise increased in CH4 yield was observed, with a nominal initial increment followed by accelerated methanogenesis conversion as H2 was depleted. This may be attributed to a substantial shift in the microbial structure from hydrogenotrophic methanogen (Methanobacteriales and Methanomicrobiales) to heterotrophs (Spirochaetia). In contrast, no significant change was observed with PBAT, regardless of the type of purged gas. TPS was broken down into numerous derivatives, including volatile fatty acids. TPS produced more byproducts with H2/CO2 (i.e., 430) than with N2 (i.e., 320). In contrast, differential scanning calorimetry analysis on PBAT revealed an increase in crystallinity from 10.20 % to 12.31 % and 11.36 % in the H2/CO2- and N2-purged conditions, respectively, after 65 days of testing. PBAT surface modifications were characterized via Fourier transform infrared spectroscopy and scanning electron microscopy. The results suggest that the addition of H2/CO2 can enhance the CH4 yield and increase the breakdown rate of TPS more than that of PBAT. This study provides novel insights into the CH4 production potential of two bioplastics with different biodegradabilities in H2/CO2-mediated anaerobic digestion systems.
Collapse
Affiliation(s)
- Eun Seo Lee
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea
| | - Seon Yeong Park
- Institute of Environmental Research, INHA University, Incheon 22212, Republic of Korea
| | - Chang Gyun Kim
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea.
| |
Collapse
|
12
|
Ashraf Joolaei A, Makian M, Prakash O, Im S, Kang S, Kim DH. Effects of particle size on the pretreatment efficiency and subsequent biogas potential of polylactic acid. BIORESOURCE TECHNOLOGY 2024; 394:130306. [PMID: 38199437 DOI: 10.1016/j.biortech.2024.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
The fragmentation of bioplastics (BPs) before pretreatment and anaerobic digestion is conducted for higher efficiency; however, based on the literature, the size reduction varies widely. In this study, initially, various combinations of thermal-alkaline pretreatments were applied at different strengths to the polylactic acid (PLA) in three groups (<0.5, 0.5 < size < 1.0, and 1.0 < size < 2.0 mm). After pretreatment, the solubilization of PLA was increased to 11.5-40.0 % using alkaline dosage and temperature ranging from 50 to 200 g OH-/kg BP, 60-100 °C, respectively, in a 1-10 h timeframe. The results were statistically proved using a 3D response surface graph, where the pretreatment was more effective for smaller particle sizes. The reduction in particle size also increased the CH4 production, which was more pronounced at the strong pretreatment (24 % increment vs. 10-15 %). Computed results indicated 44-86 % conversion of pretreated PLA particles to CH4, supported by Fourier transform infrared spectroscopy analysis, especially focusing on the intensity of -OH bands.
Collapse
Affiliation(s)
- Ali Ashraf Joolaei
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Masoud Makian
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Om Prakash
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sungwon Kang
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Dong-Hoon Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
13
|
Myburgh MW, van Zyl WH, Modesti M, Viljoen-Bloom M, Favaro L. Enzymatic hydrolysis of single-use bioplastic items by improved recombinant yeast strains. BIORESOURCE TECHNOLOGY 2023; 390:129908. [PMID: 37866766 DOI: 10.1016/j.biortech.2023.129908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Single-use bioplastic items pose new challenges for a circular plastics economy as they require different processing than petroleum-based plastics items. Microbial and enzymatic recycling approaches could address some of the pitfalls created by the influx of bioplastic waste. In this study, the recombinant expression of a cutinase-like-enzyme (CLE1) was improved in the yeast Saccharomyces cerevisiae to efficiently hydrolyse several commercial single-use bioplastic items constituting blends of poly(lactic acid), poly(1,4-butylene adipate-co-terephthalate), poly(butylene succinate) and mineral fillers. The hydrolysis process was optimised in controlled bioreactor configurations to deliver substantial monomer concentrations and, ultimately, 29 to 78% weight loss. Product inhibition studies and molecular docking provided insights into potential bottlenecks of the enzymatic hydrolysis process, while FT-IR analysis showed the preferential breakdown of specific polymers in blended commercial bioplastic items. This work constitutes a step towards implementing enzymatic hydrolysis as a circular economy approach for the valorisation of end-of-life single-use bioplastic items.
Collapse
Affiliation(s)
- Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Michele Modesti
- DII, Department of Industrial Engineering, University of Padova. Via Gradenigo 6, 35131 Padova, Italy
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
14
|
Clagnan E, Cucina M, Vilas Sajgule R, De Nisi P, Adani F. Microbial community acclimatization enhances bioplastics biodegradation and biogas production under thermophilic anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 390:129889. [PMID: 37866767 DOI: 10.1016/j.biortech.2023.129889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
This paper reports the results of a novel study of microbial acclimatization for bioplastics anaerobic degradation and conversion into biogas. Three sequential anaerobic digestion (AD) runs were carried out to favour microbial acclimatization to two different bioplastics, starch-based (SBS) and polyactic-acid (PLA). AD of SBS and PLA bioplastics was favoured by the acclimatization of the inoculum to the substrate after each run of AD. SBS conversion into biogas increased by 52 % (from 94 to 143 NL kgVS-1) and it was correlated with the enhanced growth of starch degrading bacteria such as Hydrogenispora, Halocella and Haloplasma. PLA anaerobic degradation increased by 97 % (from 395 to 779 NLbiogas kgVS-1) and it was related to the acclimatization of known PLA-degraders such as Tepidimicrobium, Methanothermobacter and Tepidanaerobacter. Microbial acclimatization appears a suitable and low-cost strategy to enhance bioplastics circularity by promoting their anaerobic biodegradation and conversion into biogas.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy; Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Mirko Cucina
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy; National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), Via della Madonna Alta 128, 06128 Perugia, Italy
| | - Raveena Vilas Sajgule
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Patrizia De Nisi
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
15
|
Pangallo D, Gelsomino A, Fazzino F, Pedullà A, Calabrò PS. The fate of biodegradable plastic during the anaerobic co-digestion of excess sludge and organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:98-106. [PMID: 37290342 DOI: 10.1016/j.wasman.2023.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Co-digestion of the organic fraction of municipal solid waste (OFMSW) and excess sludge has several benefits especially related to improved methane production and better process stability. In recent years, the presence of biodegradable plastics is increasingly common in OFMSW especially since, as in Italy, biodegradable bags are used for its collection. In this paper, the influence and the fate of biodegradable bags during anaerobic co-digestion of excess sludge and OFMSW are assessed. The best results in terms of methane yield (about 180 NmL/gVS) have been obtained with the 50:50 (VS basis) co-digestion of excess sludge and OFMSW with an organic loading rate of 2 kgVS/m3·d. Bioplastic degradation is very limited during the co-digestion but it does not influence methane production or digestate chemical characteristics. However, the feeding of bioplastic bags seems to induce a higher phytotoxicity and the presence of undigested fragments is anyway a problem for further treatment or direct utilization of digestate.
Collapse
Affiliation(s)
- Domenica Pangallo
- Università degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - Antonio Gelsomino
- Università degli Studi Mediterranea di Reggio Calabria, Department of Agricultural Sciences, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Filippo Fazzino
- Università degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy; Università degli Studi di Catania, Department of Civil Engineering and Architecture, Viale A. Doria, 6, Catania, Italy
| | - Altea Pedullà
- Università degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - Paolo S Calabrò
- Università degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy.
| |
Collapse
|
16
|
Bracciale MP, De Gioannis G, Falzarano M, Muntoni A, Polettini A, Pomi R, Rossi A, Sarasini F, Tirillò J, Zonfa T. Anaerobic biodegradation of disposable PLA-based products: Assessing the correlation with physical, chemical and microstructural properties. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131244. [PMID: 36965354 DOI: 10.1016/j.jhazmat.2023.131244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
In the present study commercial Polylactic Acid-based disposable cups and plates were selected for lab scale anaerobic degradability tests. The experiments were carried out under thermophilic conditions at different inoculum to substrate ratios and test material sizes, and the specific biogas production and associated kinetics were evaluated. Maximum biogas production was comparable for almost all the experimental runs (1620 and 1830 NmL/gTOCPLA) and a biodegradation degree in the range 86-100% was attained. Moreover, physical, chemical and microscopical analyses were used to characterize the tested materials before and after the degradation. The products composition was assessed and the presence of some additives (mainly Ca-based) was detected. Potential correlations among the process parameters and product composition were derived and a delay in process kinetics with increasing amount of additives embedded in the polymeric matrix was observed, confirming the relevant influence of the chemical blend on the biodegradation process.
Collapse
Affiliation(s)
| | - Giorgia De Gioannis
- DICAAR Department, University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Marica Falzarano
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy.
| | - Aldo Muntoni
- DICAAR Department, University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Alessandra Polettini
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Raffaella Pomi
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Andreina Rossi
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Fabrizio Sarasini
- DICMA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Jacopo Tirillò
- DICMA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Tatiana Zonfa
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
17
|
Kriswantoro JA, Chu CY, Chang TR, Pai HJ, Chang CK, Chiu YP. Comparison of thermal alkaline pretreatment and zinc acetate-catalyzed methanolysis (MtOH-ZnOAc) for anaerobic digestion of bioplastic waste. BIORESOURCE TECHNOLOGY 2023; 377:128959. [PMID: 36965583 DOI: 10.1016/j.biortech.2023.128959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The aim of this work was to study the effect of thermal alkaline pretreatment and zinc acetate-catalyzed methanolysis (MtOH-ZnOAc) in biogas production from bioplastic in anaerobic digestion. The pretreated bioplastic with MtOH-ZnOAc performs efficient solubilization and produced 205.7 ± 6.9 mL/g CODadded, which is higher than thermal alkaline degradation. The mesophilic condition produces more than 79% higher biogas compared with the thermophilic condition with the diluted pretreated bioplastic by 30 times. The kinetic study was well fit the experimental data and showed the correlation between cumulative biogas, production rate, and lag phase with mono- and two-stage system in batch fermentation. The two-stage system produced 315.6 ± 7.7 mL/g CODadded which was higher 67.2 ± 2.02 than the mono-stage system. Methanosaetaceae predominates among the Archaea, which are primarily responsible for methanogenesis, showing a contribution to a higher biogas production rate.
Collapse
Affiliation(s)
- Jayen Aris Kriswantoro
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan; School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Indonesia
| | - Chen-Yeon Chu
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan; Institute of Atmospheric Pollution Research (IIA), CNR, Italy.
| | - Ting-Rui Chang
- Institute of Green Products, Feng Chia University, Taiwan; Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taiwan
| | - Hao-Jen Pai
- Institute of Green Products, Feng Chia University, Taiwan; Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taiwan
| | | | | |
Collapse
|
18
|
Myburgh MW, Favaro L, van Zyl WH, Viljoen-Bloom M. Engineered yeast for the efficient hydrolysis of polylactic acid. BIORESOURCE TECHNOLOGY 2023; 378:129008. [PMID: 37011843 DOI: 10.1016/j.biortech.2023.129008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling.
Collapse
Affiliation(s)
- Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
19
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T. Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2216. [PMID: 36984096 PMCID: PMC10058929 DOI: 10.3390/ma16062216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions.
Collapse
|
20
|
Hejna A, Barczewski M, Kosmela P, Mysiukiewicz O, Aniśko J, Sulima P, Andrzej Przyborowski J, Reza Saeb M. The impact of thermomechanical and chemical treatment of waste Brewers' spent grain and soil biodegradation of sustainable Mater-Bi-Based biocomposites. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:260-271. [PMID: 36279594 DOI: 10.1016/j.wasman.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive plastic pollution, development of sustainable and biodegradable polymer materials is crucial to reduce environmental burdens and support climate neutrality. Application of lignocellulosic wastes as fillers for polymer composites was broadly reported, but analysis of biodegradation behavior of resulting biocomposites was rarely examined. Herein, sustainable Mater-Bi-based biocomposites filled with thermomechanically- and chemically-modified brewers' spent grain (BSG) were prepared and subjected to 12-week soil burial test simulating their biodegradation in natural environment. BSG stabilizing effect on polymer matrix affected by the content of melanoidins and antioxidant phytochemicals, along with the impact of diisocyanate applied to strengthen the interfacial adhesion. Biocomposites showed 25-35 wt% mass loss over 12 weeks resulting from swelling of BSG filler and sample microcracking, which increased surface roughness by 247-448 %. The degree of decomposition was partially reduced by BSG modifications pointing to the stabilizing effect of melanoidins and phytochemicals, and enhanced interfacial adhesion. Soil burial-induced structural changes enhanced biocomposites' thermal stability determined by thermogravimetric analysis shifting decomposition onset by 14.4-32.0 °C due to the biodegradation of lower molecular weight starch macromolecules confirmed by differential scanning calorimetry. For unfilled Mater-Bi, it caused an average 32 % reduction in complex viscosity and storage modulus captured by oscillatory rheological measurements. Nonetheless, the inverse effect was noted for biocomposites where modulus increased even by one order of magnitude due to the swelling of BSG particles and amorphous phase decomposition. Presented results indicate that BSG promotes soil degradation of Mater-Bi and its rate can be engineered by biofiller treatment elaboration.
Collapse
Affiliation(s)
- Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland; Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12 80-233, Gdańsk, Poland.
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Paulina Kosmela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Olga Mysiukiewicz
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Joanna Aniśko
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
| | - Jerzy Andrzej Przyborowski
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12 80-233, Gdańsk, Poland
| |
Collapse
|
21
|
García-Depraect O, Lebrero R, Rodriguez-Vega S, Börner RA, Börner T, Muñoz R. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127655. [PMID: 35870672 DOI: 10.1016/j.biortech.2022.127655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The feasibility of producing volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation by a non-pretreated anaerobic sludge was investigated. Mesophilic, anaerobic, acidogenic batch assays at 1, 10 and 20 g/L feed concentrations revealed the feasibility of producing VFAs from polyhydroxyalkanoates (PHA), i.e., PHB and PHBV, but not from PBS, PCL and PLA under the test conditions and time. However, only high PHA substrate concentrations (10-20 g/L) resulted in organic overloading and decreasing the pH of the culture broth down to 4-5, which in turn induced the accumulation of VFAs via kinetic imbalance between acidogenesis and methanogenesis. Gaseous carbon (C-CO2 and C-CH4) accounted for 8-35% of the total initial carbon, while C-VFAs represented 10-18%, mainly as acetate and butyrate. This study represents the first systematically assessed proof-of-concept to produce VFAs from PHA, which is key for the design of bioplastic-to-bioplastic recycling (bio)technologies.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Sara Rodriguez-Vega
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Tim Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|