1
|
He L, Li J, Tang L, Wang Y, Zhao X, Ding K, Xu L, Gu L, Cheng S, Wei YY. Applying side-stream gas recirculation to promote anaerobic digestion of food waste under ammonia stress: Overlooked impact of gaseous atmospheres on microorganisms. WATER RESEARCH 2025; 281:123571. [PMID: 40184706 DOI: 10.1016/j.watres.2025.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
High ammonia concentrations can be toxic to microorganisms, leading to the accumulation of hydrogen (H2) and acids in anaerobic digestion (AD) system. In this study, a side gas recycling strategy (SGR), coupled with a primary reactor and a small side-stream reactor, which recirculates biogas between primary reactor and side reactor was employed to mitigate ammonia inhibition. This approach enabled the mesophilic side-stream gas recirculation system (SMGR) and the thermophilic side-stream gas recirculation system (STGR) to ultimately withstand ammonia stress levels of 2.5 g/L and 3.5 g/L, respectively, while maintaining lower hydrogen partial pressures. In contrast, the control group experienced system failure at an ammonia concentration of 2 g/L. Enzyme activity, microbial community, and metaproteomic analysis indicated that the side reactor enriched microorganisms with strong hydrogen-utilizing capacity, while the primary reactor was enriched with Methanosaeta. Furthermore, key pathways related to propionate metabolism, ABC transporters, and methane production were enhanced in the primary reactor, along with increased ATPase activity. The activity of key enzymes involved in AD was also significantly enhanced. This study enhances the understanding of the impact of gas atmosphere control on the microbial ecology and metabolic characteristics of AD system, providing valuable insights and practical guidance for the development of Engineering applications in this field.
Collapse
Affiliation(s)
- Linyan He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Yifei Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xueyu Zhao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Keke Ding
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Shang Cheng
- Animal Husbandry Technology Popularization Master Station of Chongqing, Chongqing 401121, China
| | - Yi Yuan Wei
- Animal Husbandry Technology Popularization Master Station of Chongqing, Chongqing 401121, China
| |
Collapse
|
2
|
Rao W, Sun Y, Guo Q, Zhang J, Zhang Z, Liang S. Anaerobic dynamic membrane bioreactor treating sulfamethoxazole wastewater: advantages of dynamic membrane and its fouling mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135832. [PMID: 39278033 DOI: 10.1016/j.jhazmat.2024.135832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Discharge of improperly treated sulfamethoxazole (SMX) wastewater seriously threats environmental security and public health. Anaerobic dynamic membrane bioreactors (AnDMBRs) technology would be cost-effective for SMX wastewater treatment, considering its low cost and satisfactory treatment efficiency. The performance of AnDMBR, though demonstrated to be excellent in treating many types of wastewaters, was for the first time investigated for treating SMX wastewater. Particular efforts were devoted to elucidating the advantages of dynamic membrane (DM) and the governing mechanism responsible for DM fouling with the presence of SMX. The threshold SMX concentration for AnDMBR was found to be 90 mg/L and the AnDMBR exhibited excellent removal efficiency of COD (90.91 %) and SMX (88.95 %) as well as satisfactory acute toxicity reduction rate (88.84 %). It was noteworthy that the DM made indispensable contributions to the removal of COD (14.26 %) and SMX (22.20 %) as well as the acute reduction of toxicity (25.81 %). The presence of SMX significantly accelerated DM fouling mainly by increasing its specific resistance, which was attributed to the increased content of small particles, high-valence metal ions and EPS content (mainly hydrophobic proteins), resulting in a denser DM structure with lower porosity. Besides, the biofouling-related bacteria (Firmicutes) was found to be enriched in the DM with the presence of SMX.
Collapse
Affiliation(s)
- Wenkai Rao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuqi Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingyang Guo
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| | - Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Li W, Han Y, Zhang Z, Cai T, Wang J, Gao T, Lu X, Zhen G. Arousing the bioelectroactivity and syntrophic metabolic functionality of microorganisms in a recirculated two-phase anaerobic digestion bioreactor for enhanced biohythane recovery from high-solids biowaste. CHEMICAL ENGINEERING JOURNAL 2024; 497:154321. [DOI: 10.1016/j.cej.2024.154321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
4
|
Peng Z, Zhang Q, Li X, Gao S, Jiang C, Peng Y. Achieving rapid endogenous partial denitrification by regulating competition and cooperation between glycogen accumulating organisms and phosphorus accumulating organisms from conventional activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130031. [PMID: 37993071 DOI: 10.1016/j.biortech.2023.130031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.
Collapse
Affiliation(s)
- Zhihao Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shouyou Gao
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100082, PR China
| | - Caifang Jiang
- Guangxi Nanning Water Co.,Ltd, Nanning 530028, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Wang W, Dong L, Zhai T, Wang W, Wu H, Kong F, Cui Y, Wang S. Bio-clogging mitigation in constructed wetland using microbial fuel cells with novel hybrid air-photocathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163423. [PMID: 37062319 DOI: 10.1016/j.scitotenv.2023.163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Excessive accumulation of extracellular polymeric substances (EPS) in constructed wetland (CW) substrate can lead to bio-clogging and affect the long-term stable operation of CW. In this study, a microbial fuel cell (MFC) was coupled with air-photocathode to mitigate CW bio-clogging by enhancing the micro-electric field environment. Because TiO2/biochar could catalyze and accelerate oxygen reduction reaction, further promoting the gain of electric energy, the electricity generation of the tandem CW-photocatalytic fuel cell (CW-PFC) reached 90.78 mW m-3. After bio-clogging was mitigated in situ in tandem CW-PFC, the porosity of CW could be restored to about 62.5 % of the initial porosity, and the zeta potential of EPS showed an obvious increase (-14.98 mV). The removal efficiencies of NH4+-N and chemical oxygen demand (COD) in tandem CW-PFC were respectively 31.8 ± 7.2 % and 86.1 ± 6.8 %, higher than those in control system (21.1 ± 11.0 % and 73.3 ± 5.6 %). Tandem CW-PFC could accelerate the degradation of EPS into small molecules (such as aromatic protein) by enhancing the electron transfer. Furthermore, microbiome structure analysis indicated that the enrichment of characteristic microorganisms (Anaerovorax) for degradation of protein-related pollutants, and electroactive bacteria (Geobacter and Trichococcus) promoted EPS degradation and electron transfer. The degradation of EPS might be attributed to the up-regulation of the abundances of carbohydrate and amino acid metabolism. This study provided a promising new strategy for synergic mitigation and prevention of bio-clogging in CW by coupling with MFC and photocatalysis.
Collapse
Affiliation(s)
- Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Huazhen Wu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
6
|
Wang Y, Zhang X, Lou Z, An X, Li X, Jiang X, Wang W, Zhao H, Fu M, Cui Z. The effects of adding exogenous lignocellulose degrading bacteria during straw incorporation in cold regions on degradation characteristics and soil indigenous bacteria communities. Front Microbiol 2023; 14:1141545. [PMID: 37234521 PMCID: PMC10206022 DOI: 10.3389/fmicb.2023.1141545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Low temperature is one of the bottleneck factors that limits the degradation of straw during rice straw incorporation. Determining strategies to promote the efficient degradation of straw in cold regions has become a highly active research area. This study was to investigate the effect of rice straw incorporation by adding exogenous lignocellulose decomposition microbial consortiums at different soil depths in cold regions. The results showed that the lignocellulose was degraded the most efficiently during straw incorporation, which was in deep soil with the full addition of a high-temperature bacterial system. The composite bacterial systems changed the indigenous soil microbial community structure and diminished the effect of straw incorporation on soil pH, it also significantly increased rice yield and effectively enhanced the functional abundance of soil microorganisms. The predominant bacteria SJA-15, Gemmatimonadaceae, and Bradyrhizobium promoted straw degradation. The concentration of bacterial system and the depth of soil had significantly positive correlations on lignocellulose degradation. These results provide new insights and a theoretical basis for the changes in the soil microbial community and the application of lignocellulose-degrading composite microbial systems with straw incorporation in cold regions.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Agronomy, Yanbian University, Yanji, China
| | - Xuelian Zhang
- College of Agronomy, Yanbian University, Yanji, China
| | - Zixi Lou
- College of Agronomy, Yanbian University, Yanji, China
| | - Xiaoya An
- College of Agronomy, Yanbian University, Yanji, China
| | - Xue Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xinbo Jiang
- College of Agronomy, Yanbian University, Yanji, China
| | - Weidong Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongyan Zhao
- College of Agronomy, Yanbian University, Yanji, China
| | - Minjie Fu
- College of Agronomy, Yanbian University, Yanji, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Pan W, Ouyang H, Tan X, Yan S, Zhang R, Deng R, Gu L, He Q. Effects of biochar addition towards the treatment of blackwater in anaerobic dynamic membrane bioreactor (AnDMBR): Comparison among room temperature, mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2023; 374:128776. [PMID: 36822557 DOI: 10.1016/j.biortech.2023.128776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Effects of biochar addition on the performance of anaerobic dynamic membrane bioreactor (AnDMBR) under different temperatures for blackwater treatment was investigated. When the organic load ratios (OLR) was 1.0 g COD/L·d, the specific methane yield for the three biochar-amended reactors were 125.7, 148.0 and 182.3 mLCH4/g CODremoved, respectively. Compare to those digesters without biochar participation, the methane production in the thermophilic reactor with biochar increased by 12% while the other two digesters increased by 6-10%. An analysis of membrane filtration resistance showed a reduction in total resistance (Rt) of 6.2 × 1011-7.3 × 1011 m-1 when biochar was added to the three reactors. The thermophilic reactors with biochar increased the relative abundance of Methanothermobacter and promoted gene expression of metabolic pathways related to hydrolysis, acid production and methane production. Overall, biochar showed great potential as an inexpensive conductive material to increase methane production with reduced membrane fouling in AnDMBR systems.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China.
| | - Honglin Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Shanji Yan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Ruihao Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
8
|
Yang Y, Wang J, Chen M, Li N, Yan J, Wang X. Self-forming electroactive dynamic membrane for enhancing the decolorization of methyl orange by weak electrical stimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160897. [PMID: 36521609 DOI: 10.1016/j.scitotenv.2022.160897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
An electroactive dynamic membrane (EADM), which enabled simultaneous solid-liquid separation and contaminants removal, has been developed by electrostimulation using domestic wastewater as inoculum. Results showed that both the control dynamic membrane (CDM), without electrical stimulation, and the EADM systems exhibited stable removal performance with chemical oxygen demand (COD), and a robustness in responding to a fluctuating organic load. With the introduction of a weak electrical field, the EADM transmembrane pressure (TMP) was significantly reduced (0.02 kPa/d) compared with the control (0.20 kPa/d). In the treatment of methyl orange (MO), the EADM system achieved a decolorization efficiency of 85.87 %, much higher than the control dynamic membrane (CDM) system (58.84 %), which can be attributed to electrical stimulation and H2 production on cathode. Microbial analysis has established that electrostimulation enriched the electroactive bacteria in the dynamic biofilm, and shaped the microbial structure, with improved contaminant removal. The results of this study highlight the potential of regulating the microbial community and creating a beneficial biofilm as a dynamic layer to facilitate contaminant removal.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jinning Wang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jiaguo Yan
- Division of Oilfield Chemicals, China Oilfield Services Limited, No. 1581, Haichuan Road, Binhai New District, Tianjin, China
| | - Xin Wang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
9
|
Fan Y, Yin M, Chen H. Insights into the role of chitosan in hydrogen production by dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160401. [PMID: 36414059 DOI: 10.1016/j.scitotenv.2022.160401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chitosan is widely used as a dewatering flocculant, but whether it affects hydrogen production from sludge anaerobic fermentation is unclear. This study aimed to elucidate the role of chitosan in the dark fermentation of waste activated sludge for hydrogen production. The results showed that chitosan had a negative effect on hydrogen production from sludge. Chitosan at 30 g/kg total suspended solids reduced hydrogen accumulation by 56.70 ± 1.22 % from 3.94 ± 0.12 to 1.71 ± 0.10 mL/g volatile suspended solids. Chitosan hindered the solubilization of sludge by flocculation, which reduced the available substrate for anaerobic fermentation. In addition, chitosan interfered with the electron transport system by reducing cytochrome C and caused lipid peroxidation by inducing reactive oxygen species, thereby inhibiting the activity of enzymes involved in anaerobic fermentation. Hydrogen production was reduced because hydrogen-producing processes (i.e., hydrolysis, acidification, and acetification) were inhibited more strongly than hydrogen-consuming processes (i.e., methanogenesis, sulfate reduction, and homoacetogenesis). Furthermore, chitosan enriched the abundance of Spirochaetaceae sp. and Holophagaceae sp., which occupied the survival space of hydrogen-producing microorganisms. This study reveals the potential impact of chitosan on hydrogen production in dark fermentation of sludge and provide direct evidence that chitosan triggers oxidative stress in anaerobic fermentation.
Collapse
Affiliation(s)
- Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
10
|
Zhang W, Chu H, Yang L, You X, Yu Z, Zhang Y, Zhou X. Technologies for pollutant removal and resource recovery from blackwater: a review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:83. [PMID: 36776490 PMCID: PMC9898867 DOI: 10.1007/s11783-023-1683-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 06/18/2023]
Abstract
Blackwater (BW), consisting of feces, urine, flushing water and toilet paper, makes up an important portion of domestic wastewater. The improper disposal of BW may lead to environmental pollution and disease transmission, threatening the sustainable development of the world. Rich in nutrients and organic matter, BW could be treated for resource recovery and reuse through various approaches. Aimed at providing guidance for the future development of BW treatment and resource recovery, this paper presented a literature review of BWs produced in different countries and types of toilets, including their physiochemical characteristics, and current treatment and resource recovery strategies. The degradation and utilization of carbon (C), nitrogen (N) and phosphorus (P) within BW are underlined. The performance of different systems was classified and summarized. Among all the treating systems, biological and ecological systems have been long and widely applied for BW treatment, showing their universality and operability in nutrients and energy recovery, but they are either slow or ineffective in removal of some refractory pollutants. Novel processes, especially advanced oxidation processes (AOPs), are becoming increasingly extensively studied in BW treatment because of their high efficiency, especially for the removal of micropollutants and pathogens. This review could serve as an instructive guidance for the design and optimization of BW treatment technologies, aiming to help in the fulfilment of sustainable human excreta management.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zhenjiang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
11
|
A Novel Anaerobic Gravity-Driven Dynamic Membrane Bioreactor (AnGDMBR): Performance and Fouling Characterization. MEMBRANES 2022; 12:membranes12070683. [PMID: 35877886 PMCID: PMC9351681 DOI: 10.3390/membranes12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Despite numerous studies undertaken to define the development and significance of the dynamic membrane (DM) formed on some coarse materials, the optimization of reactor configuration and the control of the membrane fouling of anaerobic dynamic membrane bioreactor (AnDMBR) need to be further investigated. The aim of this study was to design a novel anaerobic gravity-driven dynamic membrane bioreactor (AnGDMBR) for the effective and low-cost treatment of municipal wastewater. An 800 mesh nylon net was determined as the optimal support material based on its less irreversible fouling and higher effluent quality by the dead-end filtration experiments. During the continuous operation period of 44 days, the reactor performance, DM filtration behavior and microbial characteristics were studied and compared with the results of recent studies. AnGDMBR had a higher removal rate of chemical oxygen demand (COD) of 85.45 ± 7.06%. Photometric analysis integrating with three-dimensional excitation–emission matrix fluorescence spectra showed that the DM effectively intercepted organics (46.34 ± 16.50%, 75.24 ± 17.35%, and 66.39 ± 17.66% for COD, polysaccharides, and proteins). The addition of suspended carriers effectively removed the DM layer by mechanical scouring, and the growth rate of transmembrane pressure (TMP) and the decreasing rate of flux were reduced from 18.7 to 4.7 Pa/h and 0.07 to 0.01 L/(m2·h2), respectively. However, a dense and thin morphological structure of the DM layer was still observed in the end of reactor operation and plenty of filamentous microorganisms (i.e., SJA-15 and Anaerolineaceae) and the acidogens (i.e., Aeromonadaceae) predominated in the DM layer, which was also embedded in the membrane pore and led to severe irreversible fouling. In summary, the novel AnGDMBR has a superior performance (higher organic removal and lower fouling rates), which provides useful information on the configuration and operation of AnDMBRs for municipal wastewater treatment.
Collapse
|