1
|
Qi X, Jia X, Li M, Ye M, Wei Y, Meng F, Fu S, Xi B. Enhancing CO 2-reduction methanogenesis in microbial electrosynthesis: Role of oxygen-containing groups on carbon-based cathodes. BIORESOURCE TECHNOLOGY 2025; 416:131830. [PMID: 39551393 DOI: 10.1016/j.biortech.2024.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO2 into CH4. Constructing a biocathode with both strong H2-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH4 production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH4 production and increasing the CH4 yield by 2-3 times. Carboxyl groups decreased the overpotential for H2 evolution and increased current density, thereby enhancing H2-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO2 fixation.
Collapse
Affiliation(s)
- Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
2
|
Yao B, Liu M, Yu L, Ni Q, Yuan C, Hu X, Feng H, Zhang J, Chen Y. Mechanism of biochar in alleviating the inhibition of anaerobic digestion under ciprofloxacin press. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135949. [PMID: 39341191 DOI: 10.1016/j.jhazmat.2024.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The antibiotic ciprofloxacin (CIP), detected in various aqueous environments, has broad-spectrum antimicrobial properties that can severely affect methanogenic performance in anaerobic systems. In this study, a novel strategy to alleviate the inhibition of AD performance under CIP press with the direct addition of biochar (BC) prepared from corn stover was proposed and the corresponding alleviation mechanism was investigated. When the dosage of BC was 5 and 20 g/L, the cumulative methane production in AD could reach 317.9 and 303.0 mL/g COD, and the CIP degradation efficiencies reached 94.1 % and 96.6 %, significantly higher than those of 123.0 mL/g COD and 81.2 % in the Control system. BC avoided excessive reactive oxygen species in anaerobic systems and induced severe oxidative stress response, while protecting the cell membrane and cell wall of microorganisms. Microorganisms could consume and utilize more organic extracellular polymeric substances for their growth and metabolism. When BC was involved in AD, fewer toxic intermediates were generated during CIP biodegradation, reducing acute and chronic toxicity in anaerobic systems. Microbial diversity suggested that BC could enrich functional microorganisms involved in direct interspecies electron transfer like Methanosaeta, norank_f_Bacteroidetes_vadinHA17, JGI-0000079-D21 and Syntrophomonas, thus facilitating the methanogenic process and CIP degradation. Genetic analyses showed that BC could effectively upregulate functional genes related to the conversion of butyrate-to-acetate and acetyl-to-methane under CIP stress, while functional gene abundance associated with CIP degradation enhanced partially, about encoding translocases, oxidoreductases, lyases, and ligases. Therefore, BC can be added to AD under CIP press to address its inhibited methanogenic performance.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Liqiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Changjie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haoran Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Rocha ME, Mangiavacchi N, Marques M, Teixeira L. Succession from acetoclastic to hydrogenotrophic microbial community during sewage sludge anaerobic digestion for bioenergy production. Biotechnol Lett 2024; 46:997-1011. [PMID: 39261355 DOI: 10.1007/s10529-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.
Collapse
Affiliation(s)
- Mariana Erthal Rocha
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Norberto Mangiavacchi
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lia Teixeira
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Cai T, Gao X, Qi X, Wang X, Liu R, Zhang L, Wang X. Role of the cathode chamber in microbial electrosynthesis: A comprehensive review of key factors. ENGINEERING MICROBIOLOGY 2024; 4:100141. [PMID: 39629110 PMCID: PMC11611015 DOI: 10.1016/j.engmic.2024.100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 12/06/2024]
Abstract
The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide (CO2) emissions, posing an ongoing threat to the ecological security of the Earth. Microbial electrosynthesis (MES) is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO2 into high-value products. The cathode chamber is a vital component of an MES system and its internal factors play crucial roles in improving the performance of the MES system. Therefore, this review aimed to provide a detailed analysis of the key factors related to the cathode chamber in the MES system. The topics covered include inward extracellular electron transfer pathways, cathode materials, applied cathode potentials, catholyte pH, and reactor configuration. In addition, this review analyzes and discusses the challenges and promising avenues for improving the conversion of CO2 into high-value products via MES.
Collapse
Affiliation(s)
- Ting Cai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xinyu Gao
- College of Arts & Science, University of North Carolina at Chapel Hill, Chapel Hill 27514, NC, United States
| | - Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaolei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruijun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Zhu Y, Guo M, Qi X, Li M, Guo M, Jia X. Enhanced degradation and methane production of food waste anaerobic digestate using an integrated system of anaerobic digestion and microbial electrolysis cells for long-term operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39637-39649. [PMID: 38829499 DOI: 10.1007/s11356-024-33525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2024] [Indexed: 06/05/2024]
Abstract
The integrated system of anaerobic digestion and microbial electrolysis cells (AD-MEC) was a novel approach to enhance the degradation of food waste anaerobic digestate and recover methane. Through long-term operation, the start-up method, organic loading, and methane production mechanism of the digestate have been investigated. At an organic loading rate of 4000 mg/L, AD-MEC increased methane production by 3-4 times and soluble chemical oxygen demand (SCOD) removal by 20.3% compared with anaerobic digestion (AD). The abundance of bacteria Fastidiosipila and Geobacter, which participated in the acid degradation and direct electron transfer in the AD-MEC, increased dramatically compared to that in the AD. The dominant methanogenic archaea in the AD-MEC and AD were Methanobacterium (44.4-56.3%) and Methanocalculus (70.05%), respectively. Geobacter and Methanobacterium were dominant in the AD-MEC by direct electron transfer of organic matter into synthetic methane intermediates. AD-MEC showed a perfect SCOD removal efficiency of the digestate, while methane as clean energy was obtained. Therefore, AD-MEC was a promising technology for deep energy transformation from digestate.
Collapse
Affiliation(s)
- Yusen Zhu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Meixin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
6
|
Guo M, Wei S, Guo M, Li M, Qi X, Wang Y, Jia X. Potential mechanisms of propionate degradation and methanogenesis in anaerobic digestion coupled with microbial electrolysis cell system: Importance of biocathode. BIORESOURCE TECHNOLOGY 2024; 400:130695. [PMID: 38614147 DOI: 10.1016/j.biortech.2024.130695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Microbial electrolysis cells (MEC) have the potential for enhancing the efficiency of anaerobic digestion (AD). In this study, microbiological and metabolic pathways in the biocathode of anaerobic digestion coupled with microbial electrolysis cells system (AD-MEC) were revealed to separate bioanode. The biocathode efficiently degraded 90 % propionate within 48 h, leading to a methane production rate of 3222 mL·m-2·d-1. The protein and heme-rich cathodic biofilm enhanced redox capacity and facilitated interspecies electron transfer. Key acid-degrading bacteria, including Dechloromonas agitata, Ignavibacteriales bacterium UTCHB2, and Syntrophobacter fumaroxidans, along with functional proteins such as cytochrome c and e-pili, established mutualistic relationships with Methanothrix soehngenii. This synergy facilitated a multi-pathway metabolic process that converted acetate and CO2 into methane. The study sheds light on the intricate microbial dynamics within the biocathode, suggesting promising prospects for the scalable integration of AD-MEC and its potential in sustainable energy production.
Collapse
Affiliation(s)
- Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Sijia Wei
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - MeiXin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
7
|
Qi X, Jia X, Li M, Chen W, Hou J, Wei Y, Fu S, Xi B. Enhancing CH 4 production in microbial electrolysis cells: Optimizing electric field via carbon cathode resistivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170992. [PMID: 38365016 DOI: 10.1016/j.scitotenv.2024.170992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Microbial electrolysis cells (MECs) are increasingly recognized as a promising technology for converting CO2 to CH4, offering the dual benefits of energy recovery from organic wastewater and CO2 emission reduction. A critical aspect of this technology is the enhancement of the electron-accepting capacity of the methanogenic biocathode to improve CH4 production efficiency. This study demonstrates that adjusting the cathode resistivity is an effective way to control the electric field intensity, thereby enhancing the electron accepting capacity and CH4 production. By maintaining the electric field intensity within approximately 8.50-10.83 mV·cm-1, the CH4 yield was observed to increase by up to two-fold. The improvement in CH4 production under optimized electric field conditions was attributed to the enhancement of the direct accepting capacity of the biocathode. This enhancement was primarily due to an increase in the relative abundance of Methanosaeta by approximately 10 % and an up to 83.78 % rise in the electron-accepting capacity of the extracellular polymeric substance. These insights offer a new perspective on the operation of methanogenic biocathodes and propose a novel biocathode construction methodology based on these findings, thus contributing to the enhancement of MEC efficiency.
Collapse
Affiliation(s)
- Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Wangmi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
8
|
Zeng Y, Liu H, Chen W, Li H, Dong H, Wu H, Xu H, Sun D, Liu X, Li P, Qiu B, Dang Y. Riboflavin-loaded carbon cloth aids the anaerobic digestion of cow dung by promoting direct interspecies electron transfer. ENVIRONMENTAL RESEARCH 2024; 241:117660. [PMID: 37979928 DOI: 10.1016/j.envres.2023.117660] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Cow dung generates globally due to increased beef and milk consumption, but its treatment efficiency remains low. Previous studies have shown that riboflavin-loaded conductive materials can improve anaerobic digestion through enhance direct interspecies electron transfer (DIET). However, its effect on the practical anaerobic digestion of cow dung remained unclear. In this study, carbon cloth loaded with riboflavin (carbon cloth-riboflavin) was added into an anaerobic digester treating cow dung. The carbon cloth-riboflavin reactor showed a better performance than other two reactors. The metagenomic analysis revealed that Methanothrix on the surface of the carbon cloth predominantly utilized the CO2 reduction for methane production, further enhanced after riboflavin addition, while Methanothrix in bulk sludge were using the acetate decarboxylation pathway. Furthermore, the carbon cloth-riboflavin enriched various major methanogenic pathways and activated a large number of enzymes associated with DIET. Riboflavin's presence altered the microbial communities and the abundance of functional genes relate to DIET, ultimately leading to a better performance of anaerobic digestion for cow dung.
Collapse
Affiliation(s)
- Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Chen G, Wang R, Sun M, Chen J, Iyobosa E, Zhao J. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies. CHEMOSPHERE 2023; 344:140251. [PMID: 37769909 DOI: 10.1016/j.chemosphere.2023.140251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Large emissions of atmospheric carbon dioxide (CO2) are causing climatic and environmental problems. It is crucial to capture and utilize the excess CO2 through diverse methods, among which the microbial electrosynthesis (MES) system has become an attractive and promising technology to mitigate greenhouse effects while reducing CO2 to high-value chemicals. However, the biological conversion and metabolic pathways through microbial catalysis have not been clearly elucidated. This review first introduces the main acetogenic bacteria for CO2 reduction and extracellular electron transfer mechanisms in MES. It then intensively analyzes the CO2 bioconversion pathways and carbon chain elongation processes in MES, together with energy supply and utilization. The factors affecting MES performance, including physical, chemical, and biological aspects, are summarized, and the strategies to promote and regulate bioconversion in MES are explored. Finally, challenges and perspectives concerning microbial electrochemical carbon sequestration are proposed, and suggestions for future research are also provided. This review provides theoretical foundation and technical support for further development and industrial application of MES for CO2 reduction.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Rongchang Wang
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
| | - Maoxin Sun
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jie Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Eheneden Iyobosa
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| |
Collapse
|