1
|
Liu Y, Li S, Xing D, Jin C, Zhao Y, Zhao J, Guo L. Performance of four thermophilic bacteria for primary sludge hydrolysis: Sludge disintegration and hydrolase activities. BIORESOURCE TECHNOLOGY 2025; 420:132123. [PMID: 39880337 DOI: 10.1016/j.biortech.2025.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed. Results indicated that pretreatment with four strains promoted the release of organic matter in extracellular polymeric substance and the disintegration of sludge structure, causing the increase of soluble substances. The total percent fluorescence response of tyrosine-like and soluble microbial by-products in dissolved organic matter increased to 64.8% after pretreatment with strain X4. Moreover, pretreatment with strain X4 resulted in the highest relative activities of α-glucosidase (1.4) and protease (2.0). Engineering implication and economic analysis verified that TB pretreatment has the potential for economic benefits and industrial applications. This study demonstrated that strain X4 exhibited the highest hydrolysis efficiency, providing a new strategy for accelerating primary sludge hydrolysis.
Collapse
Affiliation(s)
- Yonghao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Tang Z, Zhang J, Yuan X, Wang D, Luo H, Yang R, Wang H. Urea promotes alkaline anaerobic fermentation of waste activated sludge for hydrogen production. BIORESOURCE TECHNOLOGY 2025; 418:131900. [PMID: 39612961 DOI: 10.1016/j.biortech.2024.131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Hydrogen production from waste activated sludge (WAS) represents a promising pathway for sustainable energy generation. This study explores the impact of urea on enhancing hydrogen production during alkaline fermentation of WAS, with the aim of reducing alkali use. Experimental results revealed that treating WAS with 90 mg/g VSS urea at a constant pH of 9.5, followed by anaerobic fermentation for 10 days, yielded 24.57 mL/g VSS of hydrogen, which is 1.42 times higher than the fermentation at constant pH 9.5 without urea. Additionally, urea exposure reduced NaOH consumption by 40.74 % and 15.79 % at constant pH 10 and 9.5, respectively, achieving a cost-effective hydrogen production at 9.16 USD/m3 H2. The observed reduction in NaOH consumption is attributed to free ammonia from urea decomposition, which acts as an NH3/NH4+ buffer. Mechanistic analysis suggests that urea disrupts hydrogen bonds within proteins, enriching hydrogen-producing microbes while inhibiting hydrogen-consuming ones, thereby promoting hydrogen production.
Collapse
Affiliation(s)
- Zhouxiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Honglei Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rongyu Yang
- College of Science, Hunan University of Technology and Business, Changsha 410215, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
3
|
Wan P, Liu Y, Li B, Yu X, Jiang L, Lv W. Yeast-enhanced activated sludge for improved nitrogen removal in wastewater treatment: Focus on dissolved organic nitrogen degradation. ENVIRONMENTAL RESEARCH 2024; 263:120181. [PMID: 39424030 DOI: 10.1016/j.envres.2024.120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Dissolved organic nitrogen (DON) in effluent of wastewater treatment plants (WWTP), particularly hydrophilic DON, is usually more effective than dissolved inorganic nitrogen (DIN) in stimulating phytoplankton growth and increases the risk of eutrophication in receiving waterbodies. Proteins, amino acids, and nucleic acids, which are the main sources of DON in the effluent, are produced during the hydrolysis of extracellular polymeric substances (EPS) in activated sludge. Herein, a yeast strain Candida tropicalis O2, which was highly efficient in degrading DON in EPS was screened. Within 48-h batch experiments, the DON removal rates of the extracted hydrophilic and hydrophobic EPS reached 68.26% and 59.27%, respectively. During the continuous 35-day operation of sequencing batch bioreactor (SBR) fed with synthetic wastewater, the yeast-enhanced activated sludge (AS-Y) reactor demonstrated a marked improvement in removing various pollutants compared to the traditional activated sludge (AS) reactor. Specifically, DON removal increased by 1.53 mg/L (24.75%), hydrophilic DON by 1.24 mg/L (27.13%), hydrophobic DON by 0.28 mg/L (12.08%), and COD removal by 4.04 mg/L (6.48%). Although the DIN removal decreased by 0.38 mg/L (3.86%), it did not attenuate the overall TN removal from the system, and an additional TN reduction of 1.15 mg/L (7.13%) was achieved. Metagenomic analysis showed that adding strain O2 slightly inhibited the DIN metabolism, and the relative abundances of napB, nirK/S, norB/C, and nosZ involved in denitrification somewhat decreased. Kyoto Encyclopedia of Genes and Genomes and Carbohydrate-Active Enzymes annotations revealed that adding strain O2 promoted amino acid and carbohydrate metabolism. The increased relative abundance of Candida indicated that strain O2 was able to colonize the sludge in AS-Y reactor, which was conducive to synergistic interactions with other microorganisms. This study provided a novel method for in situ improving nitrogen removal in WWTP and reducing the eutrophication risk of the effluent to receiving waterbodies.
Collapse
Affiliation(s)
- Pengfei Wan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Ying Liu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Bo Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Xiao Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China
| | - Wenzhou Lv
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Fu Y, Wu J, Wu Y, Yang B, Wang X, Xu R, Meng F. Development of a novel membrane-based quorum-quenching microbial isolator for biofouling control: Process performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130817. [PMID: 38723725 DOI: 10.1016/j.biortech.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Jiajie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| |
Collapse
|
5
|
Liu Z, Heng S, Dai Q, Gao Y, Han Y, Hu L, Liu Y, Lu X, Zhen G. Simultaneous removal of antibiotic resistance genes and improved dewatering ability of waste activated sludge by Fe(II)-activated persulfate oxidation. WATER RESEARCH 2024; 253:121265. [PMID: 38340701 DOI: 10.1016/j.watres.2024.121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Waste activated sludge properties vary widely with different regions due to the difference in living standards and geographical distribution, making a big challenge to developing a universally effective sludge dewatering technique. The Fe(II)-activated persulfate (S2O82-) oxidation process shows excellent ability to disrupt sludge cells and extracellular polymeric substances (EPS), and release bound water from sludge flocs. In this study, the discrepancies in the physicochemical characteristics of sludge samples from seven representative cities in China (e.g., dewaterability, EPS composition, surface charge, microbial community, relative abundance of antibiotic resistance genes (ARGs), etc.) were investigated, and the role of Fe(II)-S2O82- oxidation in enhancing removal of antibiotic resistance genes and dewatering ability were explored. The results showed significant differences between the EPS distribution and chemical composition of sludge samples due to different treatment processes, effluent sources, and regions. The Fe(II)-S2O82- oxidation pretreatment had a good enhancement of sludge dewatering capacity (up to 76 %). Microbial analysis showed that the microbial community in each sludge varied significantly depending on the types of wastewater, the wastewater treatment processes, and the regions, but Fe(II)-S2O82- oxidation was able to attack and rupture the sludge zoogloea indiscriminately. Genetic analysis further showed that a considerable number of ARGs were detected in all of these sludge samples and that Fe(II)-S2O82- oxidation was effective in removing ARGs by higher than 90 %. The highly active radicals (e.g., SO4-·, ·OH) produced in this process caused drastic damage to sludge microbial cells and DNA stability while liberating the EPS/cell-bound water. Co-occurrence network analysis highlighted a positive correlation between population distribution and ARGs abundance, while variations in microbial communities were linked to regional differences in living standards and level of economic development. Despite these variations, the Fe(II)-S2O82- oxidation consistently achieved excellent performance in both ARGs removal and sludge dewatering. The significant modularity of associations between different microbial communities also confirms its ability to reduce horizontal gene transfer (HGT) by scavenging microbes.
Collapse
Affiliation(s)
- Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shiliang Heng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qicai Dai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingtian Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yisheng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
6
|
Yan H, Xu L, Su J, Wei H, Li X. Synergistic promotion of sludge reduction by surfactant-producing and lysozyme-producing bacteria: Optimization and effect of Na . BIORESOURCE TECHNOLOGY 2024; 393:130065. [PMID: 37984671 DOI: 10.1016/j.biortech.2023.130065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
To improve the efficiency of aerobic digestion, this investigation utilized the synergistic effect of lysozyme-producing strain YH14 and surfactant-producing strain ZXY4 to promote sludge hydrolysis, and added NaCl to enhance this promoting effect. The best performance in promoting sludge hydrolysis was achieved when the inoculum of functional bacteria was 12 % (inoculum ratio of strain YH14: strain ZXY4 = 1:3) and the dosage of NaCl was 5 g L-1, which caused an increase of 19.25 % in the SS removal rate and 2588.21 mg L-1 in the SCOD release, as compared with the control. Fluorescence region integral analysis shows that the synergy of two functional bacteria and NaCl can enhance the biodegradability of sludge. Protein secondary structure analysis shows that strain ZXY4 and Na+ cause the EPS structure to loosen, increasing the chances of lysozyme lysis of bacteria. Nucleotide metabolism, metabolism of other amino acids and membrane transport enhanced in a co-processing system.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
7
|
Ma K, Han X, Li Q, Kong Y, Liu Q, Yan X, Luo Y, Li X, Wen H, Cao Z. Improved anaerobic sludge fermentation mediated by a tryptophan-degrading consortium: Effectiveness assessment and mechanism deciphering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119623. [PMID: 38029496 DOI: 10.1016/j.jenvman.2023.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The hydrolysis of extracellular polymeric substances (EPS) represents a critical bottleneck in the anaerobic fermentation of waste activated sludge (WAS), while tryptophan is identified as an underestimated constituent of EPS. Herein, we harnessed a tryptophan-degrading microbial consortium (TDC) to enhance the hydrolysis efficiency of WAS. At TDC dosages of 5%, 10%, and 20%, a notable increase in SCOD was observed by factors of 1.13, 1.39, and 1.88, respectively. The introduction of TDC improved both the yield and quality of short chain fatty acids (SCFAs), the maximum SCFA yield increased from 590.6 to 1820.2, 1957.9 and 2194.9 mg COD/L, whilst the acetate ratio within SCFAs was raised from 34.1% to 61.2-70.9%. Furthermore, as TDC dosage increased, the relative activity of protease exhibited significant increments, reaching 116.3%, 168.0%, and 266.1%, respectively. This enhancement facilitated WAS solubilization and the release of organic substances from bound EPS into soluble EPS. Microbial analysis identified Tetrasphaera and Soehngenia as key participants in WAS solubilization and the breakdown of protein fraction. Metabolic analysis revealed that TDC triggered the secretion of enzymes associated with amino acid metabolism and fatty acid biosynthesis, thereby fostering the decomposition of proteins and production of SCFAs.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China.
| | - Xinxin Han
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Qiujuan Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Yu Kong
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Qiaoli Liu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Xu Yan
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Yahong Luo
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Xiaopin Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Huiyang Wen
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| |
Collapse
|
8
|
Yan H, Xu L, Su J, Wei H, Li X, Cao S. Biotransformation of sulfamethoxazole by newly isolated surfactant-producing strain Proteus mirabilis sp. ZXY4: Removal efficiency, pathways, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 385:129422. [PMID: 37406832 DOI: 10.1016/j.biortech.2023.129422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In this study, the SMX degrading strain Proteus mirabilis sp. ZXY4 with surfactant manufacturing potential was isolated from sludge utilizing blood agar and CTAB agar plate. FTIR analysis indicated that the biosurfactant generated by strain ZXY4 was glycolipid. 3D-EEM demonstrated that SMX biodegradation was strongly connected to biosurfactants, the synergistic effect of biodegradation and biosurfactant made strain ZXY4 have excellent SMX degradation performance. Under the optimal conditions of inoculation dosage of 15%, temperature of 30 ℃, pH of 7 and initial SMX concentration of 5 mg L-1, strain ZXY4 could completely degrade SMX within 24 h. SMX biodegrades at low concentrations (less than5 mg L-1) followed by the zero-order kinetic model, high concentration (>5 mg L-1) is more consistent with the first-order kinetic model. LC-MS analysis revealed 14 SMX degradation intermediates, and five potential biodegradation mechanisms were postulated. The findings provide new insights into the biodegradation of SMX.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ling Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Peng SM, Luo HC, Wang ZH, Yang SS, Guo WQ, Ren NQ. Enhanced in-situ sludge reduction of the side-stream process via employing micro-aerobic approach in both mainstream and side-stream. BIORESOURCE TECHNOLOGY 2023; 377:128914. [PMID: 36940881 DOI: 10.1016/j.biortech.2023.128914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.41% SRE, while maintaining carbon and nitrogen removal efficiency. Micro-aerobic in mainstream accelerated the hydrolysis of particulate organic matter (POM) and promoted denitrification. Micro-aerobic in side-stream increased cell lysis and ATP dissipation, thus increasing SRE. Microbial community structure indicated that the cooperative interactions among hydrolytic, slow growing, predatory and fermentation bacteria played key roles in improving SRE. This study confirmed that SSR coupled micro-aerobic was a promising and practical process, which could benefit nitrogen removal and sludge reduction in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Si-Mai Peng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Wan P, Liu Y, Zhang Q, Jiang L, Chen H, Lv W. Enhanced degradation of extracellular polymeric substances by yeast in activated sludge to achieve sludge reduction. BIORESOURCE TECHNOLOGY 2023; 377:128915. [PMID: 36934907 DOI: 10.1016/j.biortech.2023.128915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Candida Tropicalis was used to improve the dewaterability of activated sludge (AS) and reduce its biomass by degrading EPS in AS. The protein, polysaccharide, and hydrophilic amino acids in EPS decreased by 54.50, 29.20, and 61.01%, respectively. Meanwhile, molecular weight distribution indicated that yeast degraded macromolecular organics into small molecular ones. The direct addition of yeast to AS was more conducive to EPS degradation. With the addition of 0.75 g/L of wet yeast cells and 24 h of aeration enhanced the dewaterability of AS. The CST and MLSS decreased by 24.44 and 10.51%, respectively. After 30 days of operation of lab-scale continuous SBRs, the CST and MLSS of AS were reduced by 6.37 ± 2.01 and 3.57 ± 0.52%, respectively. FTIR spectroscopy results showed that some hydrophilic functional groups were reduced. This study provides a new approach for the in-situ reduction of AS in wastewater treatment plant.
Collapse
Affiliation(s)
- Pengfei Wan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Quandi Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Heping Chen
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Wenzhou Lv
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Wang Q, Zhao Y, Zhang C, Zhao M, Jia X, Mutabazi E, Liu Y. New insights into hexavalent chromium exposure in electron donor limited denitrification: bio-electron behavior. BIORESOURCE TECHNOLOGY 2023; 380:129088. [PMID: 37094618 DOI: 10.1016/j.biortech.2023.129088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The bio-electron behavior (electron production, transmission, and consumption) response to a typical heavy metal, hexavalent chromium, was unraveled in the electron donor limited system (EDLS) and electron donor sufficient system (EDSS). Nicotinamide adenine dinucleotide and adenosine triphosphate production were reduced by 44% and 47%, respectively, due to glucose metabolism inhibition, leading to NO3--N declining to 31% in EDLS. The decreased electron carrier contents and denitrifying enzymes activity inhibited electron transmission and consumption in both EDLS and EDSS. Additionally, electron transfer and antioxidant stress abilities were reduced, further hindering the survival of denitrifiers in EDLS. The lack of dominant genera (Comamonas, Thermomonas, and Microbacterium) in EDLS was the primary reason for poor biofilm formation and chromium adaptability. The decreased expression of enzymes related to glucose metabolism caused the imbalance of electron supply, transport, and consumption in EDLS, adversely impacting nitrogen metabolism and inhibiting denitrification performance.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Emmanuel Mutabazi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
12
|
Pan X, Zou X, He J, Pang H, Zhang P, Zhong Y, Ding J. Enhancing short-chain fatty acids recovery through anaerobic fermentation of waste activated sludge with cation exchange resin assisted lysozyme pretreatment: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Zhang P, Zhou Y, Pan X, He J, Zou X, Zhong Y, Zhang J, Cai Q. Enhanced acidogenic fermentation from Al-rich waste activated sludge by combining lysozyme and sodium citrate pretreatment: Perspectives of Al stabilization and enzyme activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161108. [PMID: 36566869 DOI: 10.1016/j.scitotenv.2022.161108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The accumulation of poly aluminum chloride (PAC) in dewatered waste activated sludge (WAS) can cause severe Al pollution and significantly reduce the production of volatile fatty acids (VFAs) from anaerobic fermentation. Herein, the combination of lysozyme and sodium citrate pretreatment was applied to stabilize the aluminum and enhance the VFAs production via anaerobic fermentation. The complexation and stabilization of aluminum by the citrate was efficient, which is conducive to relieving the inhibition of aluminum on lysozymes and other extracellular hydrolases. Compared with the control group, the lysozyme, protease and α-glucosidase activities were obtained at 1.86, 1.72, and 1.15 times, respectively, following the pretreatment. 129.71 mg/g volatile suspended solids (VSS) of soluble proteins and 26.3 mg/g VSS of polysaccharides were obtained within 4 h, together with the degradation of 124 % more proteins and 75 % more polysaccharides within three days. This provided a sufficient number of substrates for VFA production. 588.4 mg COD/g VSS of total VFAs were obtained after the six-day anaerobic fermentation from Al-rich WAS following the combination of lysozyme and sodium citrate pretreatment, which was 7.3 times higher than that of the control group. This study presents a novel approach for enhancing VFA production in anaerobic fermentation as well as reducing risk of Al hazards from Al-rich WAS.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xiang Zou
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yijie Zhong
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qiupeng Cai
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
14
|
Yan H, Ali A, Su J, Shi J, Xu L, Huang T, Wang Y. Sodium alginate/sinter gel spheres immobilized lysozyme producing strain SJ25 enhanced sludge reduction: Optimization and mechanism. BIORESOURCE TECHNOLOGY 2023; 371:128643. [PMID: 36681345 DOI: 10.1016/j.biortech.2023.128643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
In order to promote sludge hydrolysis and improve the efficiency of aerobic digestion, the sodium alginate immobilized gel spheres pellet B (SIP B) were prepared using sodium alginate (SA) and sinter as carrier to immobilize lysozyme producing strain SJ25. The optimal conditions for SIP B to promote sludge hydrolysis were 5.6 mg SS-1 dosage and pH of 9.0. Under the optimal condition compared with the control group, the reduction efficiency of suspended solids (SS) in 24 h was increased by 26.89 %, the release of soluble chemical oxygen demand (SCOD) was increased by 517.79 mg L-1, polysaccharide (PS) and protein (PN) concentrations were increased by 186.69 and 368.68 mg L-1, respectively. SIP B enhanced the degradation efficiency of sludge by promote the release of lysozyme, prolonging the action time of the enzyme, enhancing the metabolism and membrane transport of xenobiotics, carbohydrate and amino.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
15
|
Li YQ, Zhao BH, Chen XT, Zhang YQ, Yang HS. Co-existence effect of copper oxide nanoparticles and ciprofloxacin on simultaneous nitrification, endogenous denitrification, and phosphorus removal by aerobic granular sludge. CHEMOSPHERE 2023; 312:137254. [PMID: 36395892 DOI: 10.1016/j.chemosphere.2022.137254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles and antibiotics are toxic to humans and ecosystems, and they inevitably coexist in the wastewater treatment plants. Hence, the co-existence effects and stress mechanism of copper (II) oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) on simultaneous nitrification, endogenous denitrification and phosphorus removal (SNEDPR) by aerobic granular sludge (AGS) were investigated here. The co-existence stress of 5 mg/L CuO NPs and 5 mg/L CIP resulted in the synergistic inhibitory effect on nutrient removal. Transformation inhibition mechanisms of carbon (C), nitrogen (N) and phosphorus (P) with CuO NPs and CIP addition were time-dependent. Furthermore, the long-term stress mainly inhibited PO43--P removal by inhibiting phosphorus release process, while short-term stress mainly inhibited phosphorus uptake process. The synergistic inhibitory effect of CuO NPs and CIP may be due to the changes of physicochemical characteristics under the co-existence of CuO NPs and CIP. This further altered the sludge characteristics, microbial community structure and functional metabolic pathways under the long-term stress. Resistance genes analysis exhibited that the co-existence stress of CuO NPs and CIP induced the amplification of qnrA (2.38 folds), qnrB (4.70 folds) and intI1 (3.41 folds) compared with the control group.
Collapse
Affiliation(s)
- Yu-Qi Li
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Bai-Hang Zhao
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiao-Tang Chen
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yu-Qing Zhang
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hai-Shan Yang
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
16
|
Sun Y, Su J, Ali A, Zhang S, Zheng Z, Min Y. Effect of fungal pellets on denitrifying bacteria at low carbon to nitrogen ratio: Nitrate removal, extracellular polymeric substances, and potential functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157591. [PMID: 35901879 DOI: 10.1016/j.scitotenv.2022.157591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This research aims to elucidate the effect of fungal pellets (FP) on denitrifying bacteria regarding nitrate (NO3--N) removal, extracellular polymeric substances (EPS), and potential functions at a low carbon to nitrogen (C/N) ratio. A symbiotic system of FP and denitrifying bacteria GF2 was established. The symbiotic system showed 100% NO3--N removal efficiency (4.07 mg L-1 h-1) at 6 h and enhanced electron transfer capability at C/N = 1.5. The interactions between FP and denitrifying bacteria promoted the production of polysaccharides (PS) in EPS. Both the increased PS and the PS provided by FP as well as protein and humic acid-like substances in EPS could be consumed by denitrifying bacteria. FP acted as a protector and provided habitat and nutrients for denitrifying bacteria as well as improved the ability of carbohydrate metabolism, amino metabolism, and nitrogen metabolism of denitrifying bacteria. This study provides a new perspective on the relationship between FP and denitrifying bacteria.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|