1
|
Duan Y, Wang Z, Ganeshan P, Sar T, Xu S, Rajendran K, Sindhu R, Binod P, Pandey A, Zhang Z, Taherzadeh MJ, Awasthi MK. Anaerobic digestion in global bio-energy production for sustainable bioeconomy: Potential and research challenges. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 208:114985. [DOI: 10.1016/j.rser.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
2
|
Zou L, Qi Z, Cheng H, Yu B, Li YY, Liu J. Advanced anaerobic digestion of household food waste pretreated by in situ-produced mixed enzymes via solid-state fermentation: Feasibility and application perspectives. ENVIRONMENTAL RESEARCH 2024; 252:119137. [PMID: 38740290 DOI: 10.1016/j.envres.2024.119137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Enzymatic pretreatment is an effective method which can improve the anaerobic digestion (AD) efficiency of household food waste (HFW). As an alternative to expensive commercial enzymes, mixed enzymes (MEs) produced in situ from HFW by solid-state fermentation (SSF) can greatly promote the hydrolysis rate of HFW and achieve advanced anaerobic digestion (AAD) economically sustainable. In this paper, strategies for improving the efficiency of the enzyme-production process and the abundance of MEs are briefly discussed, including SSF, fungal co-cultivation, and stepwise fermentation. The feasibility of using HFW as an applicable substrate for producing MEs (amylase, protease, and lignocellulose-degrading enzymes) and its potential advantages in HFW anaerobic digestion are comprehensively illustrated. Based on the findings, an integrated AAD process of HFW pretreated with MEs produced in situ was proposed to maximise bioenergy recovery. The mass balance results showed that the total volatile solids removal rate could reach 98.56%. Moreover, the net energy output could reach 2168.62 MJ/t HFW, which is 9.79% higher than that without in situ-produced MEs and pretreatment. Finally, perspectives for further study are presented.
Collapse
Affiliation(s)
- Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhuoying Qi
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Bohan Yu
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
3
|
Singh R, Lindenberger C, Chawade A, Vivekanand V. Unveiling the microwave heating performance of biochar as microwave absorber for microwave-assisted pyrolysis technology. Sci Rep 2024; 14:9222. [PMID: 38649433 PMCID: PMC11035662 DOI: 10.1038/s41598-024-59738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Microwave (MW) heating has gained significant attention in food industries and biomass-to-biofuels through pyrolysis over conventional heating. However, constraints for promoting MW heating related to the use of different MW absorbers are still a major concern that needs to be investigated. The present study was conducted to explore the MW heating performance of biochar as a low-cost MW absorber for performing pyrolysis. Experiments were performed on biochar under different biochar dosing (25 g, 37.5 g, 50 g), MW power (400 W, 700 W, 1000 W), and particle sizes (6 mm, 8 mm, 10 mm). Results showed that MW power and biochar dosing significantly impacted average heating rate (AHR) from 17.5 to 65.4 °C/min at 400 W and 1000 W at 50 g. AHR first increased, and then no significant changes were obtained, from 37.5 to 50 g. AHR was examined by full factorial design, with 94.6% fitting actual data with predicted data. The model suggested that the particle size of biochar influenced less on AHR. Furthermore, microwave absorption efficiency and biochar weight loss were investigated, and microwave absorption efficiency decreased as MW power increased, which means 17.16% of microwave absorption efficiency was achieved at 400 W rather than 700 W and 1000 W. Biochar weight loss estimated by employing mass-balance analysis, 2-10.4% change in biochar weight loss was obtained owing to higher heating rates at higher powers and biochar dosing.
Collapse
Affiliation(s)
- Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Christoph Lindenberger
- University of Applied Sciences Amberg-Weiden, Kaiser-Wilhelm-Ring 23, 92224, Amberg, Germany
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
4
|
Soomro AA, Rehman KU, Cai M, Laghari ZA, Zheng L, Yu Z, Zhang J. Larval biomass production from the co-digestion of mushroom root waste and soybean curd residues by black soldier fly larvae (Hermetia illucens L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30112-30125. [PMID: 38602637 DOI: 10.1007/s11356-024-33173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
People are increasingly using black soldier fly larvae (BSFL) as a sustainable waste management solution. They are high in protein and other essential nutrients, making them an ideal food source for livestock, poultry, and fish. Prior laboratory studies with BSFL developed on pure mushroom root waste (MRW) showed poor conversion efficiency compared to a regular artificial diet. Therefore, we mixed the nutrient-rich soybean curd residues (SCR) with MRW in different ratios (M2-M5). Pure mushroom root waste (M1, MRW 100%) had the lowest survival rate (86.2%), but it increased up to 96.9% with the SCR percentage increasing. M1 had the longest developmental period (31.1 days) and the lowest BSFL weight (7.4 g). However, the addition of SCR reduced the development time to 22.0 and 21.5 days in M4 (MRW 40%, SCR 60%) and M5 (MRW 20%, SCR 80%), respectively, and improved the larval weight to 10.9 g in M4 and 11.8 g in M5. Other groups did not have as much feed conversion ratio (FCR) (8.4 for M4 and M5), bioconversion (M4 5.4%; M5 5.9%), or lipid content (M4 25.2%; M5 24.3%). These mixtures did. Compare this to M1. We observed better results, with no significant differences between the M4 and M5 groups and their parameters. In the present study, our main target was to utilize more MRW. Therefore, we preferred the M4 group in our nutritional and safety investigation and further compared it with the artificial diet (M7). The heavy metals and essential amino acids (histidine 3.6%, methionine 2.7%, and threonine 3.8%) required for human consumption compared to WHO/FAO levels showed satisfactory levels. Furthermore, fatty acids (capric acid 1.9%, palmitic acid 15.3%, oleic acid 17.3%, and arachidonic acid 0.3%) also showed higher levels in M4 than M7. The SEM images and FT-IR spectra from the residues showed that the BSFL in group M4 changed the structure of the compact fiber to crack and remove fibers, which made the co-conversion mixture better.
Collapse
Affiliation(s)
- Abdul Aziz Soomro
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Pakistan Agricultural Research Council-Arid Zone Research Centre, Umerkot, Pakistan
| | - Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- German Institute of Food Technologies (DIL E.V.), Prof.-V.-Klitzing-Str. 7, 49610, Quakenbrück, Germany
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zubair Ahmed Laghari
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, 70060, Sindh, Pakistan
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
5
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
6
|
Albogami A, Naguib DM. Agricultural wastes: a new promising source for phenylalanine ammonia-lyase as anticancer agent. 3 Biotech 2024; 14:22. [PMID: 38156037 PMCID: PMC10751285 DOI: 10.1007/s13205-023-03871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023] Open
Abstract
The present study aims to investigate the physicochemical characteristics of phenylalanine ammonia-lyase (PAL) extracted from agricultural waste and its potential use as an anticancer agent in comparison to microbial PAL. We extracted and partially purified PAL from agricultural waste sources. We assessed the temperature and pH range of PAL and determined enzyme kinetics parameters including Michaelis constants (Km), maximum velocity (Vmax), and specificity constant values (Vmax/Km). Additionally, we examined the effects of different storage temperatures on PAL activity. In our analysis, we compared the efficacy of agricultural waste-derived PAL with PAL from Rhodotorula glutinis. The results demonstrated that PAL extracted from agricultural waste exhibited significantly higher specific activity (Vmax/Km) compared to its microbial counterpart. The agricultural waste-derived PAL displayed a stronger affinity for phenylalanine, as indicated by a lower Km value than the microbial PAL did. Furthermore, PAL from agricultural waste maintained activity across a broader temperature and pH range (15-75 °C, pH 5-11), in contrast to microbial PAL (20-60 °C, pH 5.5-10). Importantly, the PAL derived from agricultural waste exhibited superior stability, retaining over 90% of its activity after 6 months of storage at room temperature (25 °C), whereas microbial PAL lost more than 70% of its activity under similar storage conditions. In anticancer experiments against various cancer cell lines, agricultural waste-derived PAL demonstrated greater anticancer activity compared to microbial PAL. These findings suggest that PAL sourced from agricultural waste has the potential to be a safe and effective natural anticancer agent.
Collapse
Affiliation(s)
- Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University (BU), Alaqiq, Saudi Arabia
| | - Deyala M. Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University (BU), Al-Mikhwah, Saudi Arabia
| |
Collapse
|
7
|
Alexis Parra-Orobio B, Soto-Paz J, Ricardo Oviedo-Ocaña E, Vali SA, Sánchez A. Advances, trends and challenges in the use of biochar as an improvement strategy in the anaerobic digestion of organic waste: a systematic analysis. Bioengineered 2023; 14:2252191. [PMID: 37712696 PMCID: PMC10506435 DOI: 10.1080/21655979.2023.2252191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 09/16/2023] Open
Abstract
A recently strategy applied to anaerobic digestion (AD) is the use of biochar (BC) obtained from the pyrolysis of different organic waste. The PRISMA protocol-based review of the most recent literature data from 2011-2022 was used in this study. The review focuses on research papers from Scopus® and Web of Knowledge®. The review protocol used permits to identify 169 articles. The review indicated a need for further research in the following challenges on the application of BC in AD: i) to increase the use of BC in developing countries, which produce large and diverse amounts of waste that are the source of production of this additive; ii) to determine the effect of BC on the AD of organic waste under psychrophilic conditions; iii) to apply tools of machine learning or robust models that allow the process optimization; iv) to perform studies that include life cycle and technical-economic analysis that allow identifying the potential of applying BC in AD in large-scale systems; v) to study the effects of BC on the agronomic characteristics of the digestate once it is applied to the soil and vi) finally, it is necessary to deepen in the effect of BC on the dynamics of nitrogen and microbial consortia that affect AD, considering the type of BC used. In the future, it is necessary to search for new solutions in terms of the transport phenomena that occurs in AD with the use of BC using robust and precise mathematical models at full-scale conditions.
Collapse
Affiliation(s)
- Brayan Alexis Parra-Orobio
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jonathan Soto-Paz
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
- Facultad de Ingeniería, Grupo de Investigación En Amenazas, Vulnerabilidad Y Riesgos a Fenómenos Naturales, Universidad de Investigación y Desarrollo, Bucaramanga, Colombia
| | - Edgar Ricardo Oviedo-Ocaña
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Seyed Alireza Vali
- Department of Chemical, Biological and Environmental Engineering, Composting Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Sánchez
- Department of Chemical, Biological and Environmental Engineering, Composting Research Group, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Arfelli F, Cespi D, Ciacci L, Passarini F. Application of life cycle assessment to high quality-soil conditioner production from biowaste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:216-225. [PMID: 37924597 DOI: 10.1016/j.wasman.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
The recent large-scale urbanization and industrialization resulted in an impressive growth of solid waste generation worldwide. Organic fraction generally constitutes a large fraction of municipal solid waste and its peculiar chemical properties open to various valorization strategies. On this purpose, life cycle assessment is applied to an innovative industrial system that processes 18 kt/y of agricultural and livestock waste into a high-quality soil conditioner. The high-quality soil conditioner production system consists of a series of processes, including anaerobic digestion and vermicomposting, allowing the generation of a peat-like material with high carbon content, porosity, and water-holding capacity. The presence of a photovoltaic plant and a cogeneration plant, fed with the biogas produced in the anaerobic digestion, makes the system entirely self-sufficient from the national grid and generating a surplus of electricity of 1177MWh/y. The high-quality soil conditioner showed better environmental performances in 15 out of 18 impact categories when compared to alternative scenarios. In particular, the high-quality soil conditioner and the related biowaste management resulted in a carbon saving of around 397 kg CO2 eq/ton compared with a scenario involving the employment of peat in place of the high-quality soil conditioner and a traditional biowaste management, and 165 kg CO2 eq/ton compared with a scenario where cogeneration is replaced by biomethane upgrading. This study demonstrates the possibility of using organic waste as an environmentally sustainable and renewable source for energy and carbon to soil conditioning.
Collapse
Affiliation(s)
- Francesco Arfelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy.
| | - Luca Ciacci
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy
| |
Collapse
|
9
|
Al-Hazmi NE, Naguib DM. Control the carcinogenic bacteria with new polysaccharides from agricultural wastes. Microb Pathog 2023; 184:106343. [PMID: 37709103 DOI: 10.1016/j.micpath.2023.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Agriculture activities industries produce a huge amount of waste every year. Agricultural wastes are a great source of natural polysaccharides characterized by accessibility, biocompatibility, and ease of modification. Finding new safe antibacterial agents has become one of the top priorities of health organizations worldwide. This priority emerged from the antibiotic resistance pathogenic bacteria hazard. Carcinogenic bacteria are one of the most dangerous antibiotic-resistant pathogenic bacteria. This study tries to investigate the antibacterial activity of polysaccharides from some agricultural wastes against carcinogenic bacteria related to gastrointestinal cancers. We determined the antibacterial activity (in terms of minimum inhibitory concentration (MIC)) and the biofilm reduction capacity. We studied the mechanism of the antibacterial activity by determining the effect of the MIC of the extracted polysaccharides on the plasma membrane permeability and the bacterial DNA content. All extracted polysaccharides showed effective antibacterial activity with low MICs ranging from 2 to 20 μg/mL. The barely straw polysaccharides showed the highest MIC (19.844 μg/mL) against Bacteroides fragilis, while the grape bagasse showed the lowest MIC (2.489 μg/mL) against Helicobacter pylori. The extracted polysaccharide showed high antibiofilm activity. Their capacity to reduce the formation of the pathogenic biofilm ranged from 75 to 95%. Regarding the antibacterial mechanism, the extracted polysaccharides showed destructive action on the DNA and the plasma membrane permeability. The bacterial DNA change percent after the treatment with the different polysaccharides ranged from 29% to -58%. The plasma membrane permeability increased by a high percentage, ranging from 92% to 123%. Agricultural waste polysaccharides are a promising antibacterial agent against antibiotic-resistant carcinogenic bacteria.
Collapse
Affiliation(s)
- Nawal E Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Qunfudah, Saudi Arabia
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt; Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University, Al-Mikhwah, Saudi Arabia.
| |
Collapse
|
10
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Madondo NI, Rathilal S, Bakare BF, Tetteh EK. Application of Bioelectrochemical Systems and Anaerobic Additives in Wastewater Treatment: A Conceptual Review. Int J Mol Sci 2023; 24:4753. [PMID: 36902185 PMCID: PMC10003464 DOI: 10.3390/ijms24054753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The interspecies electron transfer (IET) between microbes and archaea is the key to how the anaerobic digestion process performs. However, renewable energy technology that utilizes the application of a bioelectrochemical system together with anaerobic additives such as magnetite-nanoparticles can promote both direct interspecies electron transfer (DIET) as well as indirect interspecies electron transfer (IIET). This has several advantages, including higher removal of toxic pollutants present in municipal wastewater, higher biomass to renewable energy conversion, and greater electrochemical efficiencies. This review explores the synergistic influence of bioelectrochemical systems and anaerobic additives on the anaerobic digestion of complex substrates such as sewage sludge. The review discussions present the mechanisms and limitations of the conventional anaerobic digestion process. In addition, the applicability of additives in syntrophic, metabolic, catalytic, enzymatic, and cation exchange activities of the anaerobic digestion process are highlighted. The synergistic effect of bio-additives and operational factors of the bioelectrochemical system is explored. It is elucidated that a bioelectrochemical system coupled with nanomaterial additives can increase biogas-methane potential compared to anaerobic digestion. Therefore, the prospects of a bioelectrochemical system for wastewater require research attention.
Collapse
Affiliation(s)
- Nhlanganiso Ivan Madondo
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, Durban 4026, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| |
Collapse
|
12
|
Singh R, Kumar R, Sarangi PK, Kovalev AA, Vivekanand V. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128458. [PMID: 36503099 DOI: 10.1016/j.biortech.2022.128458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Energy demands and immense environmental degradation have extorted for production of low-carbon and carbon-neutral fuels. Abundantly available lignocellulosic biomass is second-generation feedstock which has potential to produce biofuels. Among all biofuels, biohydrogen is carbon neutral and sustainable biofuel which can be produced by thermochemical conversion routes mainly gasification. However, there are still numerous unsolved challenges related to physicochemical properties of lignocellulosic biomass. To tackle these issues, physical, chemical and thermal pretreatment methods can be employed to improve these properties and further strengthen usability of biomass for biohydrogen production. Pelletization, torrefaction and hydrothermal carbonization pretreatment have shown significant results for treating biomass and biohydrogen enhancement. This study reviews physical and thermal pretreatment and its effect on biohydrogen yield. Framework of techno-economic analysis of processes is provided for examining feasibility of required pretreatments. This sustainable approach will help to reduce emissions and promote concept of bioenergy with carbon capture and storage.
Collapse
Affiliation(s)
- Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Rajesh Kumar
- Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Andrey A Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM", 1st Institutskiy Proezd, 5, 109428 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
13
|
Vuppaladadiyam AK, Vuppaladadiyam SSV, Awasthi A, Sahoo A, Rehman S, Pant KK, Murugavelh S, Huang Q, Anthony E, Fennel P, Bhattacharya S, Leu SY. Biomass pyrolysis: A review on recent advancements and green hydrogen production. BIORESOURCE TECHNOLOGY 2022; 364:128087. [PMID: 36216287 DOI: 10.1016/j.biortech.2022.128087] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Biomass pyrolysis has recently gained increasing attention as a thermochemical conversion process for obtaining value-added products, thanks to the development of cutting-edge, innovative and cost-effective pyrolysis processes. Over time, new and novel pyrolysis techniques have emerged, and these processes can be tuned to maximize the production of high-quality hydrogen. This review examines recent advancements in biomass pyrolysis by classifying them into conventional, advanced and emerging approaches. A comprehensive overview on the recent advancements in biomass pyrolysis, highlighting the current status for industrial applications is presented. Further, the impact of each technique under different approaches on conversion of biomass for hydrogen production is evaluated. Techniques, such as inline catalytic pyrolysis, microwave pyrolysis, etc., can be employed for the sustainable production of hydrogen. Finally, the techno-economic analysis is presented to understand the viability of pyrolysis at large scale. The outlook highlights discernments into future directions, aimed to overcome the current shortcomings.
Collapse
Affiliation(s)
| | | | - Abhishek Awasthi
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, VIT, Vellore, Tamil Nadu 632014, India
| | - Qing Huang
- College of Ecology & Environment, Hainan University, Haikou, Hainan 570228, China
| | - Edward Anthony
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Paul Fennel
- Department of Chemical Engineering, Imperial College London, UK
| | - Sankar Bhattacharya
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|