1
|
Wang W, He H, Zhang P, Yan J, He H, Chen X, Wang H, Zhu W, Cui Z, Yuan X. Industrial-scale aerobic composting with the addition of Paenibacillus mucilaginosus: Improving product quality and removing antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124187. [PMID: 39929121 DOI: 10.1016/j.jenvman.2025.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
This study comprehensively investigated the effects of adding Paenibacillus mucilaginosus to industrial-scale compost on compost quality, microbial community dynamics, and antibiotic resistance genes (ARGs). The results of this investigation unequivocally demonstrated that the inclusion of Paenibacillus mucilaginosus prolonged the thermophilic phase of composting, thereby enhancing organic matter decomposition and facilitating nitrogen fraction conversion. Moreover, the inoculation of Paenibacillus mucilaginosus altered the microbial community structure during the rapid heating and thermophilic stages. Significantly, the removal rates of tetM, tetR, and sul1 were 99.84%, 99.68%, and 97.61%, respectively, with inoculation increasing these rates by 8.94%, 9.85%, and 9.34%, respectively, compared to the control (P < 0.05). These findings highlighted the efficacy of incorporating Paenibacillus mucilaginosus into industrial-scale compost as a potent strategy to enhance nutrient transformation processes and mitigate ARG activity.
Collapse
Affiliation(s)
- Weiwei Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiban He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jing Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Haoxing He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaotian Chen
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Gu J, Cao Y, Sun Q, Zhang J, Xu Y, Jin H, Huang H. The bacterial community drive the humification and greenhouse gas emissions during plant residues composting under different aeration rates. ENVIRONMENTAL TECHNOLOGY 2025; 46:848-862. [PMID: 38920117 DOI: 10.1080/09593330.2024.2369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the effects of different aeration intensities on organic matter (OM) degradation, greenhouse gas emissions (GHG) as well as humification during plant residue composting. Three intermittent aeration intensities of 0.084 (Tlow), 0.19 (Tmedium) and 0.34 (Thigh) L min-1kg-1 DM with 30 min on/30 min off were conducted on a lab-scale composting experiment. Results showed that OM mineralization in Thigh was more evident than Tlow and Tmedium, resulting in the highest humic acid content. Humic acid content in Tmedium and Thigh was 15.7% and 18.5% higher than that in Tlow. The average O2 concentration was 4.9%, 9.5% and 13.6% for Tlow, Tmedium and Thigh. Compared with Tmedium and Thigh, Tlow reduced CO2 and N2O emissions by 18.3%-39.6% and 72.4%-63.9%, but the CH4 emission was highest in Tlow. But the total GHG emission was the lowest in Thigh. Linear Discriminant Analysis Effect Size analysis showed that the core bacteria within Tlow mainly belonged to Anaerolineaceae, which was significantly negatively correlated to the emission of CH4. Thermostaphylospora, Unclassified_Vicinamibacteraceae and Sulfurifustis were identified as core bacteria in Tmedium and Thigh, and these genus were significantly postively correlated to CO2 and N2O emissions. Redundancy analysis showed that total orgnic carbon, O2 and electrical conductivity were the key factors affecting the evolution of bacterial community.
Collapse
Affiliation(s)
- Junyu Gu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
| | - Yun Cao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Qian Sun
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Jing Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Yueding Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongying Huang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Jiao Z, Zhang L, Zhang A, Li R, Zhang K, Wu Z, Kang Z, Wei Y, Zhang L, Wang Y, Shi X, Li J. Mature compost enhanced the harmlessness level in co-composting swine manure and carcasses in large-scale silo reactors. Front Microbiol 2024; 15:1494332. [PMID: 39606114 PMCID: PMC11599618 DOI: 10.3389/fmicb.2024.1494332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the impact of incorporating mature compost on the harmlessness and maturity level of composting from swine manure and carcasses from industrialized pig farms in continuously running large-scale silo reactor systems. The potential human or animal bacterial pathogens and core bacterial community in composting were analyzed by high-throughput sequencing of 16S rRNA gene amplicons. The results showed that the addition of mature compost in the GD group significantly increased the temperature of all depths, the accumulated temperature of compost, and the germination index (75.43%) compared to that in the HN group without mature compost. High-throughput sequencing revealed that the dominated genera in GD were Ureibacillus, Lactobacillus, Corynebacterium, Staphylococcus, and Jeotgalicoccus, and the addition of mature compost could significantly increase the relative abundance of Ureibacillus (16.82%) that was associated with the biodegradation of organics. A total of 421 potential bacterial pathogens were detected, and the dominated genera of pathogens were Streptococcus, Staphylococcus, and Anaerococcus. The potential pathogen in the GD group with mature compost was reduced from 7.16 to 0.77%, which was significantly lower than that (2.97%) in the HN group. Together, these findings revealed that mature compost addition in large-scale reactor composting could accelerate the harmless and humification process, providing an effective and environmentally friendly scheme to deal with the main organic wastes in intensive pig farms.
Collapse
Affiliation(s)
- Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, China
| | - Liping Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ake Zhang
- Fuyang Agricultural Science Academy, Fuyang, Anhui, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Kui Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | | | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Liu L, Yang K, Li L, Liu W, Yuan H, Han Y, Zhang E, Zheng Y, Jia Y. The aeration and dredging stimulate the reduction of pollution and carbon emissions in a sediment microcosm study. Sci Rep 2024; 14:26172. [PMID: 39478047 PMCID: PMC11525881 DOI: 10.1038/s41598-024-75790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Sediment dredging and aeration are used as important technical measures to remediate internal loading of sediment in polluted rivers. However, previous studies have overlooked the impact of dredging and aeration on Greenhouse gases (GHGs) emission. We established three aeration rate(six different aeration intervals), one dredging treatment to investigate the effect of aeration and dredging on pollutant removals and CO2, CH4 and N2O emissions. The results indicated the pollutants and GHGs at 2.4, 3.4, 4.4 L min-1 aeration rates reached collaborative emission reduction after more than 3 h or within 1.5 h. Meanwhile, the GHGs fluxes after aeration decreased with the increasing aeration rate, with the mean CO2, CH4 and N2O fluxes of 69.74, 0.16, 7.53 mg m-2 h-1 and 33.64, 0.09, 4.17 mg m-2 h-1 before and after aeration, respectively. With respect to dredging, the pollutants and N2O reached synergic effects between reduction of pollution and carbon emissions after 1 h dredging. Specifically, the CO2 and CH4 emissions after dredging was lower than those of before dredging, but the N2O emissions was higher than those of before dredging. In addition, our analysis revealed that the dissolved oxygen (DO), oxidation-reduction potential (ORP), available potassium (AK) and ammoniacal nitrogen (NH4+-N) in the sediment influenced GHGs fluxes at the water-air interface in the aeration. Our study indicated moderate aeration and dredging can achieve the synergistic effect in reducing pollution and carbon emissions.
Collapse
Affiliation(s)
- Lixiang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ke Yang
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang, 330006, China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
| | - Weiwei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China
| | - Yongwei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Enxiang Zhang
- Chongqing Research Academy of Environmental Science, Chongqing, 401336, China
| | - Yuping Zheng
- Guangzhou Transport Planning Research Institute, Guangzhou, 510030, China
| | - Yajuan Jia
- Baotou Ecological Environment Technology Center, Baotou, 014010, China
| |
Collapse
|
5
|
Cui Y, Zeng Y, Hu H, Zhang Y, Wang D, Feng D. Biochar, phosphate, and magnesium oxide in seaweed and cornstarch dregs co-composting: Enhancing organic matter degradation, humification, and nitrogen retention. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:207-217. [PMID: 39059157 DOI: 10.1016/j.wasman.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Seaweed waste, abundant and rich in plant-stimulating properties, has the potential to be transformed into valuable soil amendments through proper composting and utilization management. Given its low carbon-to-nitrogen ratio, co-composting seaweed with carbon-rich cornstarch dregs is an effective strategy. However, the potential application of co-composting largely depends on the efficiency of the composting and the quality of the product. This study explores the effects of adding 10 % corn stalk biochar to a co-composting system of seaweed and cornstarch dregs, alongside varying buffering capacities of phosphates (KH2PO4 and K2HPO4·3H2O-KH2PO4) and MgO, on the degradation efficiency of organic matter, nitrogen transformation, and humification. The results indicate that the addition of biochar and salts enhances the oxygen utilization rate (OUR) and cellulase activity during the thermophilic phase. Additionally, X-ray diffraction (XRD) and parallel factor analysis (PARAFAC) demonstrate more intense solubilization and transformation of proteinaceous substances, along with cellulose degradation. These processes are crucial for enhancing organic matter degradation and humification, significantly boosting degradation (with an increase of 28.6 % to 33.8 %) and humification levels (HA/FA increased by 37.1 % to 49.6 %). Specifically, groups with high buffering capacity significantly promote the formation of NO3--N and NH4+-N, and a higher degree of humification, creating an optimal environment for significantly improving nitrogen retention (increased by 4.80 %). Additionally, this treatment retains and slightly enhances the plant-stimulating properties of seaweed. These findings underscore the potential of integrating biochar with specific ratios of phosphates and MgO to enhance composting efficiency and product quality while preserving the plant-stimulating effects of seaweed.
Collapse
Affiliation(s)
- Yinjie Cui
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Huili Hu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
6
|
Wang L, Wang Z, Wang Z, Zheng J. Integrated aerobic-anaerobic digestion of highly solids-loaded corn stover and swine manure under dynamic aeration: Temperature rise, physicochemical characteristics, and methane production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121864. [PMID: 39018837 DOI: 10.1016/j.jenvman.2024.121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
This research aimed to design an integrated aerobic-anaerobic reactor with dynamic aeration that was automatically regulated based on real-time oxygen concentration and investigate the aerobic pretreatment and subsequent dry co-anaerobic digestion (co-AD) characteristics of highly solids-loaded corn stover and swine manure in terms of temperature rise, physiochemical characteristics, and methane production. The high-temperature feedstocks from the aerobic pretreatment phase rapidly entered the AD phase without transportation and effectively improved the start-up and methane production of the co-AD. Oxygen concentration range, aeration rate, and pretreatment time affected the cumulative aeration time, temperature rise, and organic matter removal interactively during aerobic pretreatment, and a low aeration rate was relatively preferable. Although the lignocellulose removal increased with the increase in pretreatment duration, the maximal lignin elimination efficiency only reached 1.30%. The inoculum injection in the transition phase from aerobic pretreatment to co-AD and the leachate reflux during co-AD were also critical for producing methane steadily apart from aerobic pretreatment. The cold air weakened the temperature rise of aerobic pretreatment, and the low-temperature leachate reduced the methane production in the co-AD process. An oxygen concentration range of 13%-17%, aeration rate of 0.10 m3/(min·m3), pretreatment time of 84 h, inoculum loading of 40%, leachate refluxing thrice per day, and double-layer inoculation were optimum for improving the integrated aerobic-anaerobic digestion system's ability to resist low temperatures and achieving high methane production. The maximal cumulative and volatile solids (VS) methane yields of corn stover and swine manure reached 444.58 L and 266.30 L/kg VS.
Collapse
Affiliation(s)
- Lili Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zicong Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zhongjiang Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingke Zheng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
7
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
8
|
Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, Nakasaki K, Mohamed Ramli N. Integrated nutrient recycling: Ammonia recovery from thermophilic composting of shrimp aquaculture sludge via self-heated bench-scale reactor and mango plant growth enhancement by the compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:55-66. [PMID: 38520898 DOI: 10.1016/j.wasman.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Due to the rapid growth of the aquaculture industry, large amounts of organic waste are released into nature and polluted the environment. Traditional organic waste treatment such as composting is a time-consuming process that retains the ammonia (NH3) in the compost, and the compost produced has little economic value as organic fertilizer. Illegal direct discharge into the environment is therefore widespread. This study investigates the recovery of NH3 through thermophilic composting of shrimp aquaculture sludge (SAS) and its application as a soil conditioner for the growth of mango plants. A maximum composting temperature of 57.10 °C was achieved through self-heating in a 200 L bench-scale reactor, resulting in NH3 recovery of 224.04 mol/ton-ds after 14 days. The addition of calcium hydroxide and increased aeration have been shown to increase NH3 volatilization. The recovered NH3 up to 3 kg-N can be used as a source of clean nitrogen for high-value microalgae cultivation, with a theoretical yield of up to 34.85 kg-algae of microalgae biomass from 1 ton-ds of SAS composting. Despite the high salinity, SAS compost improved mango plant growth and disease resistance. These results highlight the potential of SAS compost as a sustainable source of clean nitrogen for microalgae cultivation and soil conditioner, contributing to a waste-free circular economy through nutrient recycling and sustainable agriculture.
Collapse
Affiliation(s)
- Hieng Ong Tie
- SMART Farming Technology Research Centre (SFTRC), Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hasfalina Che Man
- SMART Farming Technology Research Centre (SFTRC), Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Fadhil Syukri
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Tokyo 192-8577, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Norulhuda Mohamed Ramli
- SMART Farming Technology Research Centre (SFTRC), Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
9
|
Cheng J, Zhang L, Gao X, Shi T, Li G, Luo W, Qi C, Xu Z. Multi-stage aeration regime to regulate organic conversion toward gas alleviation and humification in food waste digestate composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120809. [PMID: 38583382 DOI: 10.1016/j.jenvman.2024.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Shi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
11
|
Shao M, Zhao X, Rehman KU, Cai M, Zheng L, Huang F, Zhang J. Synergistic bioconversion of organic waste by black soldier fly ( Hermetia illucens) larvae and thermophilic cellulose-degrading bacteria. Front Microbiol 2024; 14:1288227. [PMID: 38268703 PMCID: PMC10806183 DOI: 10.3389/fmicb.2023.1288227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction This study examines the optimum conversion of Wuzhishan pig manure by Black Soldier Fly Larvae (BSFL) at various phases of development, as well as the impact of gut microbiota on conversion efficiency. Method and results In terms of conversion efficiency, BSFL outperformed the growing pig stage (GP) group, with significantly higher survival rates (96.75%), fresh weight (0.23 g), and larval conversion rate (19.96%) compared to the other groups. Notably, the GP group showed significant dry matter reductions (43.27%) and improved feed conversion rates (2.17). Nutritional composition varied, with the GP group having a lower organic carbon content. High throughput 16S rRNA sequencing revealed unique profiles, with the GP group exhibiting an excess of Lactobacillus and Clostridium. Promising cellulose-degrading bacteria in pig manure and BSFL intestines, including Bacillus cereus and Bacillus subtilis, showed superior cellulose degradation capabilities. The synergy of these thermophilic bacteria with BSFL greatly increased conversion efficiency. The BSFL1-10 group demonstrated high growth and conversion efficiency under specific conditions, with remarkable larval moisture content (71.11%), residual moisture content (63.20%), and waste reduction rate (42.28%). Discussion This study sheds light on the optimal stages for BSFL conversion of pig manure, gut microbiota dynamics, promising thermophilic cellulose-degrading bacteria, and the significant enhancement of efficiency through synergistic interactions. These findings hold great potential for sustainable waste management and efficient biomass conversion, contributing to environmental preservation and resource recovery.
Collapse
Affiliation(s)
- Mingying Shao
- Institute of Tropical Agricultural Technology, Hainan Vocational University, Haikou, Hainan, China
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Zhao
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- German Institute of Food Technologies, Quakenbrück, Germany
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
12
|
Ma S, Shen Y, Ding J, Cheng H, Zhou H, Ge M, Wang J, Cheng Q, Zhang D, Zhang Y, Xu P, Zhang P. Effects of biochar and volcanic rock addition on humification and microbial community during aerobic composting of cow manure. BIORESOURCE TECHNOLOGY 2024; 391:129973. [PMID: 37931759 DOI: 10.1016/j.biortech.2023.129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Additives are important for accelerating humification during aerobic composting. The impacts of porous additives biochar and volcanic rock on the physicochemical parameters, maturity indicators, microbial communities, and bacterial functional metabolism during the aerobic composting of cow manure were investigated in this study. The results showed that the biochar addition decreased the E4/E6 value by 10.42% and increased the abundance of Geobacillus (1.69 times), and volcanic rock addition decreased the E4/E6 value by 11.31% and increased the abundance of Thermobacillus (1.29 times) and Paenibacillus (1.72 times). The network analysis demonstrated that biochar promoted maturity by reducing the abundance of Pseudomonas and increasing the abundance of genes related to the metabolism of other amino acids, while volcanic rock promoted maturity by reducing the abundance of genes related to nucleotide metabolism. These results provided data and theoretical justification for the selection of porous additives for composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongsheng Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haibin Zhou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Mianshen Ge
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jian Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qiongyi Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Dongli Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yun Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengxiang Xu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengyue Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
13
|
Liu J, Ai X, Lu C, Tian H. Comparison of bioaerosol release characteristics between windrow and trough sludge composting plants: Concentration distribution, community evolution, bioaerosolization behaviour, and exposure risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:164925. [PMID: 37392882 DOI: 10.1016/j.scitotenv.2023.164925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/20/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Windrow and trough composting are two mainstream composting methods, but the effect of composting methods on bioaerosol release from sludge composting plants is unclear. The study compared the bioaerosol release characteristics and exposure risks between the two composting methods. The results showed that the bacterial aerosol concentrations in the windrow composting plant ranged from 14,196 to 24,549 CFU/m3, while the fungal aerosol concentrations in the trough composting plant reached 5874 to 9284 CFU/m3; there were differences in the microbial community structures between the two sludge composting plants, and the composting method had a greater effect on bacterial community evolution than on fungal community evolution. The biochemical phase was the primary source of the bioaerosolization behaviour of the microbial bioaerosols. In the windrow and trough composting plants, the bacterial bioaerosolization index ranged from 1.00 to 999.28 and from 1.44 to 24.57, and the fungal bioaerosolization index ranged from 1.38 to 1.59 and from 0.34 to 7.72, respectively. Bacteria preferentially aerosolized mainly in the mesophilic stage, while the peak of the fungal bioaerosolization index appeared in the thermophilic stage. The total non-carcinogenic risks for bacterial aerosols were 3.4 and 2.4, while those for fungi were 1.0 and 3.2 in the trough and windrow sludge composting plants, respectively. Respiration is the main exposure pathway for bioaerosols. It is necessary to develop different bioaerosol protection measures for different sludge composting methods. The results of this study provided basic data and theoretical guidance for reducing the potential risk of bioaerosols in sludge composting plants.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Xinyu Ai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hongyu Tian
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
14
|
Meng X, Wang Q, Zhao X, Cai Y, Fu J, Zhu M, Ma X, Wang P, Liu R, Wang Y, Liu W, Ren L. Effect of aeration/micro-aeration on lignocellulosic decomposition, maturity and seedling phytotoxicity during full-scale biogas residues composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:246-255. [PMID: 37327518 DOI: 10.1016/j.wasman.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
With the accelerated construction of biogas plants, the amount of biogas residues are expanding. Composting has been widely implemented to deal with biogas residues. Aeration regulation is the main factor affecting the post-composting treatment of biogas residues as high-quality fertilizer or soil amendment. Therefore, this study aimed to investigate the impact of different aeration regulations on full-scale biogas residues compost maturity by controlling oxygen concentration under micro-aeration and aeration conditions. Results showed that micro-aerobic extended the thermophilic stage of 17 days at above 55 ℃ and facilitated the mineralization process of organic nitrogen into nitrate nitrogen to retain higher N nutrition levels compared to aerobic treatment. For biogas residues with high moisture, aeration should be regulated at different full-scale composting stages. Total organic carbon (TOC), NH4+-N, NO3--N, total potassium (TK), total phosphorus (TP) and the germination index (GI) could be used to evaluate stabilization, fertilizer efficiency and phytotoxicity of compost with frequent monitoring times. However, seedling growth trials were still necessary in full-scale composting plants when changing of composting process or biogas residues feedstock.
Collapse
Affiliation(s)
- Xingyao Meng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Qingping Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xixi Zhao
- China IPPR International Engineering Co., Ltd, Logistics and Industrial Engineering Research Institute, Beijing 100083, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingyi Fu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Mingcheng Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xuguang Ma
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - Pan Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Rufei Liu
- Cucde Environmental Technology Co., Ltd, Beijing 100120, China
| | - Yongjing Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Wei Liu
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs /Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Science, Wuhan, 430064, China
| | - Lianhai Ren
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, Nakasaki K, Mohamed Ramli N. The effect of calcium hydroxide addition on enhancing ammonia recovery during thermophilic composting in a self-heated pilot-scale reactor. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:194-202. [PMID: 37178588 DOI: 10.1016/j.wasman.2023.04.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
A modified outdoor large-scale nutrient recycling system was developed to compost organic sludge and aimed to recover clean nitrogen for the cultivation of high-value-added microalgae. This study investigated the effect of calcium hydroxide addition on enhancing NH3 recovery in a pilot-scale reactor self-heated by metabolic heat of microorganisms during thermophilic composting of dewatered cow dung. 350 kg-ww of compost was prepared at the ratio of 5: 14: 1 (dewatered cowdung: rice husk: compost-seed) in a 4 m3 cylindrical rotary drum composting reactor for 14 days of aerated composting. High compost temperature up to 67 °C was observed from day 1 of composting, proving that thermophilic composting was achieved through the self-heating process. The temperature of compost increases as microbial activity increases and temperature decreases as organic matter decreases. The high CO2 evolution rate on day 0-2 (0.02-0.08 mol/min) indicated that microorganisms are most active in degrading organic matter. The increasing conversion of carbon demonstrated that organic carbon was degraded by microbial activity and emitted as CO2. The nitrogen mass balance revealed that adding calcium hydroxide to the compost and increasing the aeration rate on day 3 volatilized 9.83 % of the remaining ammonium ions in the compost, thereby improving the ammonia recovery. Moreover, Geobacillus was found to be the most dominant bacteria under elevated temperature that functions in the hydrolysis of non-dissolved nitrogen for better NH3 recovery. The presented results show that by thermophilic composting 1 ton-ds of dewatered cowdung for NH3 recovery, up to 11.54 kg-ds of microalgae can be produced.
Collapse
Affiliation(s)
- Hieng Ong Tie
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Fadhil Syukri
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Tokyo 192-8577, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Norulhuda Mohamed Ramli
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
16
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|