1
|
Esmaeili Nasrabadi A, Eydi M, Bonyadi Z. Utilizing Chlorella vulgaris algae as an eco-friendly coagulant for efficient removal of polyethylene microplastics from aquatic environments. Heliyon 2023; 9:e22338. [PMID: 38045186 PMCID: PMC10692900 DOI: 10.1016/j.heliyon.2023.e22338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Polyethylene (PE) microplastics (MPs) are small particles of plastic made from polyethylene, which is a commonly used type of plastic. These microplastics can be found in water sources, such as rivers, lakes, and oceans. They are typically less than 5 mm in size. Chlorella vulgaris (C. vulgaris) is an excellent, simple and inexpensive biocoagulant that can effectively remove a wide range of pollutants through the coagulation and flocculation mechanism. In this study, C. vulgaris algae were used to remove PE MPs. The experiments were designed using the Behnken Box model. The evaluated parameters were the initial PE concentration (100-400 mg/L), the C. vulgaris dose (50-200), and the pH (4-10). The findings showed that increasing the concentration of polyethylene had a positive effect on the efficiency of removal. In addition, the dose of C. vulgaris and pH parameters were inversely and directly related to removal efficiency, respectively. The highest removal efficiency was observed under alkaline conditions. Overall, the maximum PE removal efficiency was 84 % when the concentration of PE was 250 mg/L, the dose of C. vulgaris was 50 mg/L, and the pH was 10. It can be concluded that algae can be used as an environmentally friendly coagulant for effectively removing MPs from aquatic environments.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Eydi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ağbulut Ü, Sirohi R, Lichtfouse E, Chen WH, Len C, Show PL, Le AT, Nguyen XP, Hoang AT. Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics. BIORESOURCE TECHNOLOGY 2023; 376:128860. [PMID: 36907228 DOI: 10.1016/j.biortech.2023.128860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Microalgae have great potential in producing energy-dense and valuable products via thermochemical processes. Therefore, producing alternative bio-oil to fossil fuel from microalgae has rapidly gained popularity due to its environmentally friendly process and elevated productivity. This current work aims to review comprehensively the microalgae bio-oil production using pyrolysis and hydrothermal liquefaction. In addition, core mechanisms of pyrolysis and hydrothermal liquefaction process for microalgae were scrutinized, showing that the presence of lipids and proteins could contribute to forming a large amount of compounds containing O and N elements in bio-oil. However, applying proper catalysts and advanced technologies for the two aforementioned approaches could improve the quality, heating value, and yield of microalgae bio-oil. In general, microalgae bio-oil produced under optimal conditions could have 46 MJ/kg heating value and 60% yield, indicating that microalgae bio-oil could become a promising alternative fuel for transportation and power generation.
Collapse
Affiliation(s)
- Ümit Ağbulut
- Department of Mechanical Engineering, Duzce University, 81620 Düzce, Türkiye
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 PR China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Christophe Len
- Institute of Chemistry for Life and Health Sciences, PSL University, France
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Anh Tuan Le
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
3
|
Fan S, Cui L, Li H, Guang M, Liu H, Qiu T, Zhang Y. Value-added biochar production from microwave pyrolysis of peanut shell. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
In order to seek efficient resource utilization, the carbonization of agricultural and forestry wastes through microwave pyrolysis technology is an important research hotspot to develop value-added products. The main objective is to produce value-added biochar through microwave pyrolysis of peanut shell in this study. The product yields, functional groups, and biochar HHVs caused by pyrolysis temperature (400, 450, 500, 550, and 600 °C), microwave power (350, 450, 550, 650, and 750 W), and residence time (10, 20, 30, 40, and 50 min) were investigated, and the energy recovery efficiencies were evaluated. It was obtained that the biochar yield declined monotonously within the range of 45.3–86.0 wt% with the enhancement of pyrolysis temperature, microwave power, or residence time. The pyrolysis temperature of 400 °C, microwave power of 350 W, and residence time of 10 min generated the maximum biochar yield (86.0 wt%). The value-added biochar was obtained with high HHV (20.15–31.02 MJ/kg) and abundant oxygen-contained functional groups (C–O bonds and C=O bonds). The maximum energy recovery efficiency during the whole process reached 97.96%. The results indicated that the peanut shell could reach high biochar yield through microwave pyrolysis, and potentially be transformed into value-added products with high energy recovery efficiency.
Collapse
Affiliation(s)
- Sichen Fan
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Longfei Cui
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Hui Li
- School of Thermal Engineering , Shandong Jianzhu University , Jinan 250101 , China
| | - Mengmeng Guang
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Hui Liu
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Tianhao Qiu
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Yaning Zhang
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|