1
|
Zhou Y, Guo P, Liu Y, Hu W, Wang T. Effects of nano-bubble water on anaerobic co-digestion of cabbage waste and cow manure under mesophilic and thermophilic conditions. ENVIRONMENTAL TECHNOLOGY 2025; 46:1766-1777. [PMID: 40173215 DOI: 10.1080/09593330.2024.2405033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 04/04/2025]
Abstract
The impact of four nano-bubble water (NBW) additions on the hydrolysis rate, methane yield, and microbial community of co-digestion of cabbage waste (CW) and cow manure (CM) under mesophilic and thermophilic conditions were investigated. Adding NBW under mesophilic conditions promoted hydrolysis, and the highest soluble chemical oxygen demand of the mesophilic digesters with the addition of CO2-NBW increased by 15.86%. Methane yield in the mesophilic digesters with Air-NBW and CO2-NBW increased by 17.54% and 14.72%, respectively. Moreover, the addition of NBW further accelerated the methane yield rate under mesophilic conditions. Due to the influence of thermophilic temperature, the impact of NBW addition on hydrolysis, methane yield, and methane yield rate in the thermophilic digesters did not differ significantly from the control. The addition of Air-NBW and N2-NBW in the thermophilic digesters resulted in only marginal increases in methane yield, by 1.09% and 5.61%, respectively. NBW addition enhanced both the abundance and diversity of microbial communities in both mesophilic and thermophilic digesters. The addition of NBW represents a promising technological advancement for enhancing the efficiency of anaerobic co-digestion of CW and CM.
Collapse
Affiliation(s)
- Youfei Zhou
- Design Institute No.3, Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd., Shanghai, People's Republic of China
| | - Peilin Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Yi Liu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Weijie Hu
- Design Institute No.3, Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd., Shanghai, People's Republic of China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Zhang W, Zhu L, Yang X, Zhu J, Dong B, Tao H. Targeted regulation of digestate dewaterability by the ozone/persulfate oxidation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120332. [PMID: 38364539 DOI: 10.1016/j.jenvman.2024.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Dewatering is the first step in the subsequent treatment and disposal of food waste digestate (FWD). However, FWD is difficult to dewatering. In this study, persulfate was synergistic oxidized by ozone to improve digestate dewaterability. The optimal conditions was at pH = 3, O3=40 mg/g TS and PDS=0.1 g/g TS, under which the reductions in the normalized capillary suction time (NCST) and bound moisture (BM) of the FWD were 89.97% and 65.79%, respectively. Hydrophilic functional groups (oxygen- and nitrogen-containing groups) and hydrophilic protein molecular structures were decomposed by the reactive species of sulfate radical (SO4·-) and hydroxyl radicals (·OH) generated in the ozone-persulfate oxidation process, disrupting the binding between EPS and water molecules. The contributions of SO4·- and ·OH to digestate dewaterability were 42.51% and 28.55%. In addition, the introduction of H+ reduced electrostatic repulsion and contributed to the condensation of digestate flocs. The environmental implication assessment and economic analysis suggested that the O3/PDS oxidation process was cost-effective and has a low environmental implication when applied to the FWD dewaterability improvement process. These results can serve as a reference for the management of FWD and further improvement of FWD treatment and disposal efficiency.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Li Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xue Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jing Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| |
Collapse
|
3
|
Foysal MJ, Salgar-Chaparro SJ. Improving the efficiency of DNA extraction from iron incrustations and oilfield-produced water. Sci Rep 2024; 14:2954. [PMID: 38316948 PMCID: PMC10844625 DOI: 10.1038/s41598-024-53134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
The quantity and quality of DNA isolated from environmental samples are crucial for getting robust high-throughput sequencing data commonly used for microbial community analysis. The differences in the nature and physicochemical properties of environmental samples impact DNA yields, and therefore, an optimisation of the protocols is always recommended. For instance, samples collected from corroded areas contain high concentrations of metals, salts, and hydrocarbons that can interfere with several steps of the DNA extraction protocols, thereby reducing yield and quality. In this study, we compared the efficiency of commercially available DNA extraction kits and laboratory-adopted methods for microbial community analysis of iron incrustations and oilfield-produced water samples. Modifications to the kits manufacturers' protocols were included to maximise the yield and quality. For iron incrustations, the modified protocol for FastDNA Spin Kit for Soil yielded higher DNA and resulted in higher diversity, including the recovery of low-abundant and rare taxa in the samples, compared to DNeasy PowerSoil Pro Kit. The DNA extracted with modified phenol-chloroform methods yielded higher DNA but failed to pass quality control PCR for 16S sequencing with and without purification. The protocols mentioned here can be used to maximise DNA recovery from iron incrustations and oilfield-produced water samples.
Collapse
Affiliation(s)
- Md Javed Foysal
- Curtin Corrosion Centre, Western Australian School of Mines, Minerals and Energy, Curtin University, Bentley, WA, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Silvia J Salgar-Chaparro
- Curtin Corrosion Centre, Western Australian School of Mines, Minerals and Energy, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
4
|
Mou A, Yu N, Yang X, Liu Y. Enhancing methane production and organic loading capacity from high solid-content wastewater in modified granular activated carbon (GAC)-amended up-flow anaerobic sludge blanket (UASB). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167609. [PMID: 37804983 DOI: 10.1016/j.scitotenv.2023.167609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Anaerobic digestion of high solid-content wastewater is hindered by high organic loading rates (OLRs). Granular activated carbon (GAC) was reported to promote direct interspecies electron transfer (DIET) and enhance reactor performance. In this study, three up-flow anaerobic sludge blanket (UASB) reactors were supplied with GAC in different locations: bottom (R1), top (R2), and bottom+top (R3). The performances of three reactors at different OLRs treating high solid-content wastewater were evaluated. At a low OLR, the highest methane yield (74 ± 4 %, g CH4-COD/g TCOD) was detected when GAC was supplied at top of the UASB (R2). When a high OLR was applied, the UASB supplemented with GAC at both bottom and top (R3) achieved the highest methane yield (66 ± 2 %, g CH4-COD/g TCOD), whereas the UASB supplemented with GAC at the top (R2) failed. Further studies on spatial distributions of sludge stability, specific methanogenic activities (SMAs), and microbial communities demonstrated the different impacts of GAC location on reactor performance and sludge characteristics under different OLRs. This study highlights the significance of considering organic loading capacity treating high solid-content wastewater when choosing GAC-based UASB systems.
Collapse
Affiliation(s)
- Anqi Mou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xinya Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Chen X, Liu W, Zhao Y, He H, Ma J, Cui Z, Yuan X. Optimization of semi-continuous dry anaerobic digestion process and biogas yield of dry yellow corn straw: Based on "gradient anaerobic digestion reactor". BIORESOURCE TECHNOLOGY 2023; 389:129804. [PMID: 37805086 DOI: 10.1016/j.biortech.2023.129804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
In China, the problem of low biogas yield of traditional biogas projects has become increasingly prominent. This study investigated the effects of different hydraulic retention times (HRTs) on the biogas production efficiency and microbial community under pilot conditions. The results show that the "Gradient anaerobic digestion reactor" can stably carry out semi-continuous dry anaerobic digestion and improve biogas yield. The highest volatile solids (VS) biogas yield (413.73 L/kg VS and 221.61 L CH4/kg VS) and VS degradation rate (48.41%) were observed at an HRT of 25 days. When the HRT was 15 days, the volumetric biogas yield was the highest (2.73 L/L/d, 1.43 L CH4/L/d), but the VS biogas yield and degradation rate were significantly decreased. Microbial analysis showed that HRT significantly affected microbial community. It provides basic data support for the development of a new anaerobic digestion process and the practical application of the straw biogas project in China.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Yehua Zhao
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Huiban He
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Jitao Ma
- Sanhe Yingsheng Bioenergy Technology Co., LTD, Sanhe 065200, China
| | - Zongjun Cui
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|