1
|
Jiao L, Zhou Q, Sun D. CRISPR-Based Regulation for High-Throughput Screening. ACS Synth Biol 2025. [PMID: 40401794 DOI: 10.1021/acssynbio.5c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
CRISPR technology has revolutionized genome editing by enabling precise, permanent modifications to genetic material. To circumvent the irreversible alterations associated with traditional CRISPR methods and facilitate research on both essential and nonessential genes, CRISPR interference or inhibition (CRISPRi) and CRISPR activation (CRISPRa) were developed. The gene-silencing approach leverages an inactivated Cas effector protein paired with guide RNA to obstruct transcription initiation or elongation, while the gene-activation approach exploits the programmability of CRISPR to activate gene expression. Recent advances in CRISPRi technology, in combination with other technologies (e.g., biosensing, sequencing), have significantly expanded its applications, allowing for genome-wide high-throughput screening (HTS) to identify genetic determinants of phenotypes. These screening strategies have been applied in biomedicine, industry, and basic research. This review explores the CRISPR regulation mechanisms, offers an overview of the workflow for genome-wide CRISPR-based regulation for screens, and highlights its superior suitability for HTS across biomedical and industrial applications. Finally, we discuss the limitations of current CRISPRi/a HTS screening methods and envision future directions in CRISPR-mediated HTS research, considering its potential for broader application across diverse fields.
Collapse
Affiliation(s)
- Lingling Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qi Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Li S, Liu Y, Gao Z, An C, Gu H, Yin H, Fu R, Shi L, Xue W, Fan D, Fei Q. Methane Valorization to Antioxidant Polysaccharides by Methanotrophic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11019-11029. [PMID: 40274597 DOI: 10.1021/acs.jafc.5c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Bioconversion of methane into functional polysaccharides presents a promising strategy for mitigating methane-induced greenhouse gas emissions and addressing the limitations of plant-derived polysaccharide and sugar-based microbial polysaccharides production. In this study, the novel methane-derived polysaccharide (MePS) was obtained from a newly isolated methanotrophic bacterium Alkalicoccus glycogenes WONF2802. Structural characterization found that MePS is a branched-chain glucan with a weight-average molecular weight of 283.2 kDa. Additionally, MePS exhibited considerable antioxidant capacities in both in vitro biochemical assays and the H2O2-induced oxidative stress cell model. This work establishes a potential pathway for polysaccharide production, reducing reliance on plant and sugar-based feedstocks, while offering a new strategy for methane emission reduction.
Collapse
Affiliation(s)
- Shen Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zixi Gao
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chao An
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Hui Gu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Xi'an Giant Biogene Technology Co., Ltd., Xi'an 710077, China
| | - Liang Shi
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Wenjiao Xue
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Lee J, Yu HE, Lee SY. Metabolic engineering of microorganisms for carbon dioxide utilization. Curr Opin Biotechnol 2025; 91:103244. [PMID: 39708676 DOI: 10.1016/j.copbio.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The escalating climate crisis underscores the urgent need for sustainable development, with CO2 utilization emerging as a pivotal approach to mitigating greenhouse gas emissions. Among various technological approaches, metabolic engineering of microorganisms for CO2 utilization offers significant potential. This review covers the engineering of endogenous CO2 fixation pathways, the construction of novel synthetic pathways, and strategies to optimize metabolic flux, enhance cofactor availability, and manipulate regulatory genes to improve CO2 assimilation efficiency. It also explores the roles of evolutionary engineering, enzyme engineering, and CO2 concentrating mechanisms in improving CO2 fixation. Additionally, the review underscores advancements in converting CO2 into valuable products such as biofuels, bioplastics, and chemicals using both native and synthetic autotrophic microorganisms.
Collapse
Affiliation(s)
- Jeageon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Hye Eun Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea; Center for Synthetic Biology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Yang Z, Tian Y, Zhao J, Liu J, Lin X, Xi Y, Wang H, Kong F, Zhang F, Qiu X. Effect of lignin carbon material on phosphorus solubilisation performance of Bacillus megaterium. Int J Biol Macromol 2025; 290:138858. [PMID: 39706426 DOI: 10.1016/j.ijbiomac.2024.138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Secondary salinisation significantly compromises soil quality because of the over-application of chemical fertilisers. The combined application of biochar and microorganisms enhanced soil physicochemical properties and improved soil remediation efficiency. However, different types of biochar had varying effects on microbial growth and reproduction. A phosphate-solubilising bacterial agent (BM-LPC) was obtained by low-temperature carbonisation/activation lignin-based porous carbon (LPC) in situ culture/adsorption Bacillus megaterium (BM). The maximum soluble phosphorus capacity of BM-LPC was 744.29 mg/L when 1 % LPC was added. This was a 22 % increase compared with BM alone. The maximum adsorption of BM by LPC was 3.66 × 109 colony-forming units (CFU)/g. At 150 days, the viable bacterial count of BM-LPC was 2.09 × 109 CFU/g. The abundances of -OH, -COOH, -NH2, and CO groups on the surface of LPC provided a stable environment for BM, which in turn, enhanced the solubilisation of phosphorus and extended the viability of BM. The findings of this study can help increase the added value of industrial lignin and provide a theoretical basis for soil remediation research.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yihui Tian
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianzhi Zhao
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiao Liu
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuliang Lin
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuebin Xi
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Huan Wang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fangong Kong
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
You D, Rasul F, Wang T, Daroch M. Insufficient Acetyl-CoA Pool Restricts the Phototrophic Production of Organic Acids in Model Cyanobacteria. Int J Mol Sci 2024; 25:11769. [PMID: 39519321 PMCID: PMC11546870 DOI: 10.3390/ijms252111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cyanobacteria are promising biological chassis to produce biochemicals such as carboxylic acids and their derivatives from CO2. In this manuscript, we reflected on cyanobacterial acetyl-CoA pool and TCA cycle as an important source of precursor molecules for the biosynthesis of carboxylic acids such as 3-hydroxypropionate, 3-hydroxybutyrate, succinate, malate, fumarate and free fatty acids, each of which is an important platform chemical for bioeconomy. We further highlighted specific features of the cyanobacterial TCA cycle, how it differs in structure and function from widely described TCA cycles of heterotrophic model organisms, and methods to make it more suitable for the production of carboxylic acids from CO2. Currently, the yields of these compounds are significantly lower than those in heterotrophic organisms and it was concluded that the primary cause of this can be attributed to the limited flux toward acetyl-CoA. Strategies like overexpressing pyruvate dehydrogenase complex or introducing synthetic bypasses are being explored to overcome these limitations. While significant progress has been made, further research is needed to enhance the metabolic efficiency of cyanobacteria, making them viable for the large-scale, sustainable production of carboxylic acids and their derivatives.
Collapse
Affiliation(s)
| | | | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (D.Y.); (F.R.); (T.W.)
| |
Collapse
|
6
|
Pressley SR, Gonzales JN, Atsumi S. Efficient utilization of xylose requires CO 2 fixation in Synechococcus elongatus PCC 7942. Metab Eng 2024; 86:115-123. [PMID: 39313109 DOI: 10.1016/j.ymben.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Cyanobacteria show great promise as autotrophic hosts for the renewable biosynthesis of useful chemicals from CO2 and light. While they can efficiently fix CO2, cyanobacteria are generally outperformed by heterotrophic production hosts in terms of productivity and titer. Photomixotrophy, or co-utilization of sugars and CO2 as carbon feedstocks, has been implemented in cyanobacteria to greatly improve productivity and titers of several chemical products. We introduced xylose photomixotrophy to a 2,3-butanediol producing strain of Synechococcus elongatus PCC 7942 and characterized the effect of gene knockouts, changing pathway expression levels, and changing growth conditions on chemical production. Interestingly, 2,3-butanediol production was almost completely inhibited in the absence of added CO2. Untargeted metabolomics implied that RuBisCO was a significant bottleneck, especially at ambient CO2 levels, restricting the supply of lower glycolysis metabolites needed for 2,3-butanediol production. The dependence of the strain on elevated CO2 levels suggests some practical limitations on how xylose photomixotrophy can be efficiently carried out in S. elongatus.
Collapse
Affiliation(s)
- Shannon R Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Jake N Gonzales
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Wang Y, Wang Q, Shan X, Wu Y, Hou S, Zhang A, Hou Y. Characteristics of cold-adapted carbonic anhydrase and efficient carbon dioxide capture based on cell surface display technology. BIORESOURCE TECHNOLOGY 2024; 399:130539. [PMID: 38458264 DOI: 10.1016/j.biortech.2024.130539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Carbonic anhydrase (CA) is currently under investigation because of its potential to capture CO2. A novel N-domain of ice nucleoproteins (INPN)-mediated surface display technique was developed to produce CA with low-temperature capture CO2 based on the mining and characterization of Colwellia sp. CA (CsCA) with cold-adapted enzyme structural features and catalytic properties. CsCA and INPN were effectively integrated into the outer membrane of the cell as fusion proteins. Throughout the display process, the integrity of the membrane of engineered bacteria BL21/INPN-CsCA was maintained. Notably, the study affirmed positive applicability, wherein 94 % activity persisted after 5 d at 15 °C, and 73 % of the activity was regained after 5 cycles of CO2 capture. BL21/INPN-CsCA displayed a high CO2 capture capacity of 52 mg of CaCO3/mg of whole-cell biocatalysts during CO2 mineralization at 25 °C. Therefore, the CsCA functional cell surface display technology could contribute significantly to environmentally friendly CO2 capture.
Collapse
Affiliation(s)
- Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xuejing Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yuwei Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Shumiao Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Ailin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Hou
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| |
Collapse
|
9
|
Lin F, Li W, Wang D, Hu G, Qin Z, Xia X, Hu L, Liu X, Luo R. Advances in succinic acid production: the enhancement of CO 2 fixation for the carbon sequestration benefits. Front Bioeng Biotechnol 2024; 12:1392414. [PMID: 38605985 PMCID: PMC11007169 DOI: 10.3389/fbioe.2024.1392414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.
Collapse
Affiliation(s)
| | | | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Xie H, Kjellström J, Lindblad P. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:134. [PMID: 37684613 PMCID: PMC10492371 DOI: 10.1186/s13068-023-02385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cyanobacteria are emerging as green cell factories for sustainable biofuel and chemical production, due to their photosynthetic ability to use solar energy, carbon dioxide and water in a direct process. The model cyanobacterial strain Synechocystis sp. PCC 6803 has been engineered for the isobutanol and 3-methyl-1-butanol production by introducing a synthetic 2-keto acid pathway. However, the achieved productions still remained low. In the present study, diverse metabolic engineering strategies were implemented in Synechocystis sp. PCC 6803 for further enhanced photosynthetic isobutanol and 3-methyl-1-butanol production. RESULTS Long-term cultivation was performed on two selected strains resulting in maximum cumulative isobutanol and 3-methyl-1-butanol titers of 1247 mg L-1 and 389 mg L-1, on day 58 and day 48, respectively. Novel Synechocystis strain integrated with a native 2-keto acid pathway was generated and showed a production of 98 mg isobutanol L-1 in short-term screening experiments. Enhanced isobutanol and 3-methyl-1-butanol production was observed when increasing the kivdS286T copy number from three to four. Isobutanol and 3-methyl-1-butanol production was effectively improved when overexpressing selected genes of the central carbon metabolism. Identified genes are potential metabolic engineering targets to further enhance productivity of pyruvate-derived bioproducts in cyanobacteria. CONCLUSIONS Enhanced isobutanol and 3-methyl-1-butanol production was successfully achieved in Synechocystis sp. PCC 6803 strains through diverse metabolic engineering strategies. The maximum cumulative isobutanol and 3-methyl-1-butanol titers, 1247 mg L-1 and 389 mg L-1, respectively, represent the current highest value reported. The significantly enhanced isobutanol and 3-methyl-1-butanol production in this study further pave the way for an industrial application of photosynthetic cyanobacteria-based biofuel and chemical synthesis from CO2.
Collapse
Affiliation(s)
- Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jarl Kjellström
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
11
|
Treece TR, Tessman M, Pomeroy RS, Mayfield SP, Simkovsky R, Atsumi S. Fluctuating pH for efficient photomixotrophic succinate production. Metab Eng 2023; 79:118-129. [PMID: 37499856 DOI: 10.1016/j.ymben.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Cyanobacteria are attracting increasing attention as a photosynthetic chassis organism for diverse biochemical production, however, photoautotrophic production remains inefficient. Photomixotrophy, a method where sugar is used to supplement baseline autotrophic metabolism in photosynthetic hosts, is becoming increasingly popular for enhancing sustainable bioproduction with multiple input energy streams. In this study, the commercially relevant diacid, succinate, was produced photomixotrophically. Succinate is an important industrial chemical that can be used for the production of a wide array of products, from pharmaceuticals to biopolymers. In this system, the substrate, glucose, is transported by a proton symporter and the product, succinate, is hypothesized to be transported by another proton symporter, but in the opposite direction. Thus, low pH is required for the import of glucose and high pH is required for the export of succinate. Succinate production was initiated in a pH 7 medium containing bicarbonate. Glucose was efficiently imported at around neutral pH. Utilization of bicarbonate by CO2 fixation raised the pH of the medium. As succinate, a diacid, was produced, the pH of the medium dropped. By repeating this cycle with additional pH adjustment, those contradictory requirements for transport were overcome. pH affects a variety of biological factors and by cycling from high pH to neutral pH processes such as CO2 fixation rates and CO2 solubility can vary. In this study the engineered strains produced succinate during fluctuating pH conditions, achieving a titer of 5.0 g L-1 after 10 days under shake flask conditions. These results demonstrate the potential for photomixotrophic production as a viable option for the large-scale production of succinate.
Collapse
Affiliation(s)
- Tanner R Treece
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | | | - Robert S Pomeroy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephen P Mayfield
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA; California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA; California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Bongirwar R, Shukla P. Metabolic sink engineering in cyanobacteria: Perspectives and applications. BIORESOURCE TECHNOLOGY 2023; 379:128974. [PMID: 36990331 DOI: 10.1016/j.biortech.2023.128974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Recent advances in metabolic engineering have made cyanobacteria emerge as promising and attractive microorganisms for sustainable production, by exploiting their natural capability for producing metabolites. The potential of metabolically engineered cyanobacterium would depend on its source-sink balance in the same way as other phototrophs. In cyanobacteria, the amount of light energy harvested (Source) is incompletely utilized by the cell to fix carbon (sink) resulting in wastage of the absorbed energy causing photoinhibition and cellular damage leading to lowered photosynthetic efficiency. Although regulatory pathways like photo-acclimation and photoprotective processes can be helpful unfortunately they limit the cell's metabolic capacity. This review describes approaches for source-sink balance and engineering heterologous metabolic sinks in cyanobacteria for enhanced photosynthetic efficiency. The advances for engineering additional metabolic pathways in cyanobacteria are also described which will provide a better understanding of the cyanobacterial source-sink balance and approaches for efficient cyanobacterial strains for valuable metabolites.
Collapse
Affiliation(s)
- Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
14
|
Chang JS, Loke Show P, Varjani S, Mannina G. Advances in bioresource technology towards carbon neutrality. BIORESOURCE TECHNOLOGY 2023; 377:128925. [PMID: 36940879 DOI: 10.1016/j.biortech.2023.128925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Centre for Smart Sustainable Circular Economy, Tunghai 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Giorgio Mannina
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
15
|
Yamane M, Osanai T. Nondiazotrophic cyanobacteria metabolic engineering for succinate and lactate production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|