1
|
Lin JY, Shi JR, Liu FC, Wang CY, Liu FW, Lin CM. Sustainable Conversion of Waste PET into Porous Activated Carbon for Efficient Cu 2+ Elimination from Aqueous Solution. ACS OMEGA 2025; 10:14994-15008. [PMID: 40290906 PMCID: PMC12019729 DOI: 10.1021/acsomega.4c10226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Heavy metal pollutants, such as Cu2+, pose significant environmental and health risks due to their toxicity and persistence in water systems. Simultaneously, the increasing accumulation of waste poly(ethylene terephthalate) (PET) bottles represents a growing environmental challenge, contributing to plastic pollution. This study addresses both issues by converting waste PET bottles into porous activated carbon (APC) via pyrolysis, creating an efficient and sustainable adsorbent for Cu2+ removal from aqueous solutions. The APC materials were thoroughly characterized by SEM, BET, and XPS analyses, revealing a highly porous structure and abundant oxygen-containing functional groups, which enhance Cu2+ adsorption. The adsorption process was determined to be spontaneous, with a low activation energy of 7.47 kJ/mol, indicating a favorable and energy-efficient adsorption mechanism. Among the APC samples, APC-800 exhibited the best performance, achieving a Cu2+ removal efficiency of 99.30% and a maximum adsorption capacity of 5.85 mg/g. Recyclability tests confirmed the material's durability, maintaining over 96% efficiency during the first three cycles, with a slight decline in later cycles. This study demonstrates a dual environmental benefit: mitigating plastic waste by repurposing PET bottles and providing an effective solution for heavy metal pollution, aligning with circular economy principles, and promoting sustainability in environmental management.
Collapse
Affiliation(s)
- Jia-Yin Lin
- Semiconductor
and Green Technology Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
- Industrial
and Smart Technology Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| | - Jun-Ren Shi
- Industrial
and Smart Technology Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| | - Fu-Chen Liu
- Department
of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chih-Ying Wang
- Semiconductor
and Green Technology Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| | - Fan-Wei Liu
- Semiconductor
and Green Technology Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Ming Lin
- Industrial
and Smart Technology Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Yang K, Guo B, Shen K, Luo W, Zhang B, Hua Y, Zhang Y. Unraveling immobilization mechanisms of Cd in soil by MgO-modified palygorskite/biochar composite: DFT calculation and combined-artificial aging. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122576. [PMID: 39307083 DOI: 10.1016/j.jenvman.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
In this study, a combination method of freeze-thaw cycle, dry-wet cycle, and chemical agings was used to investigate the aging effect of MgO-modified palygorskite/biochar composite (MPBC) in soil, and its immobilization capacity on Cd under aging. The immobilization mechanisms of MPBC for Cd were explored through several characterizations and DFT calculations. The results showed that MPBC effectively reduced the activate state of Cd by 56.63% at 8 mg/kg Cd concentration. Additionally, MPBC treatment improved physicochemical properties of soil, notably increasing soil pH by 0.26-0.64 units, thereby facilitating Cd immobilization. The predominant mechanism underlying Cd immobilization by MPBC involved the Cd-π complexation, ions exchange, precipitation, and complexation of surface functional groups, including C-O and C=O, with Cd. The citric acid emerged as a milder oxidizing agent combined with freeze-thaw and dry-wet aging conducive to studying the aging effect of MPBC. The dynamic calculation showed that MgO played an important role in the Cd adsorption, with a maximum probability function of 18.35 for Cd. Moreover, within the temperature range of 20 °C-30 °C, the distance between MPBC and Cd was the closest. This study provides a new idea for artificial aging of biochar and a practical method for the remediation of Cd pollution in soil.
Collapse
Affiliation(s)
- Kunpeng Yang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Bingyue Guo
- Jiangsu Geology&Mineral Exploration Bureau, Nanjing, 210018, PR China
| | - Kai Shen
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Nanjing Gekof Institute of Environmental Protection Technology Equipment Co., Ltd. Nanjing, 211106, PR China
| | - Wenxuan Luo
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Bin Zhang
- Jiangsu Geology&Mineral Exploration Bureau, Nanjing, 210018, PR China
| | - Yuxuan Hua
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
4
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
5
|
Zhou Y, Wang X, Yang Y, Jiang L, Wang X, Tang Y, Xiao L. Enhanced copper removal by magnesium modified biochar derived from Alternanthera philoxeroides. ENVIRONMENTAL RESEARCH 2024; 251:118652. [PMID: 38508361 DOI: 10.1016/j.envres.2024.118652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Adsorption processes are being widely used by various researchers for the removal of heavy metals from waste streams and biochar has been frequently used as an adsorbent. In this study, a MgO-loaded biochar derived from Alternanthera philoxeroides (MAPB) was synthesized for the removal of Cu(II). Compared with other biochar absorbents, MAPB showed a relatively slow adsorption kinetics, but an effective removal of Cu(II) with a maximum sorption capacity of 1, 238 mg/g. The adsorption mechanism of Cu(II) by MAPB was mainly controlled by chemical precipitation as Cu2(OH)3NO3, complexation and ion replacement. Fixed bed column with MAPB packed in same dosage (1, 000 mg) and different bed depth (1.3, 2.6 and 3.9 cm) showed that the increased of bed depth by mixing MAPB with quartz sand could increase the removal of Cu(II). The fitted breakthrough (BT) models showed that mixing MAPB with support media could reduce the mass transfer rate, increase the dynamic adsorption capacity and BT time. Therefore, MAPB adsorbent act as a highly efficient long-term adsorbent for Cu(II) contaminated water treatment may have great ecological and environmental significance.
Collapse
Affiliation(s)
- Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Xiaoyu Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Yu Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Lijuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Xiaolin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing, 210023, China.
| |
Collapse
|
6
|
Barszcz W, Łożyńska M, Molenda J. Impact of pyrolysis process conditions on the structure of biochar obtained from apple waste. Sci Rep 2024; 14:10501. [PMID: 38714738 PMCID: PMC11076542 DOI: 10.1038/s41598-024-61394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/06/2024] [Indexed: 05/10/2024] Open
Abstract
Biochar is an eco-friendly carbon material whose properties allow it to be used as a sorbent for wastewater treatment or soil remediation. The paper presents the results of research related to the pyrolysis process of apple waste after supercritical CO2 extraction with the simultaneous use of physical activation. The research assessed the influence of the temperature of the pyrolysis process and steam activation on the structural properties of the obtained biochar, i.e. specific surface, porous structure, and presence of functional groups. The results obtained confirmed that lower temperature pyrolysis produces biochar characterised by the presence of functional groups and ordered structure. On the other hand, high temperature pyrolysis with simultaneous steam activation determines microporosity and high values of the specific surface area. Taking into consideration pollutant sorption mechanisms (physical and chemical sorption), the obtained biochar materials can be used as sorbents in water and wastewater treatment.
Collapse
Affiliation(s)
- Wioletta Barszcz
- Bioeconomy and Ecoinnovation Centre, Łukasiewicz Research Network - Institute for Sustainable Technologies, 26-600, Radom, Poland.
- Faculty of Buildings Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653, Warsaw, Poland.
| | - Monika Łożyńska
- Bioeconomy and Ecoinnovation Centre, Łukasiewicz Research Network - Institute for Sustainable Technologies, 26-600, Radom, Poland
| | - Jarosław Molenda
- Bioeconomy and Ecoinnovation Centre, Łukasiewicz Research Network - Institute for Sustainable Technologies, 26-600, Radom, Poland
| |
Collapse
|
7
|
Ali Babeker TM, Lv S, Wu J, Zhou J, Chen Q. Insight into Cu (II) adsorption on pyrochar and hydrochar resultant from Acacia Senegal waste for wastewater decontamination. CHEMOSPHERE 2024; 356:141881. [PMID: 38575078 DOI: 10.1016/j.chemosphere.2024.141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Acacia Senegal waste (ASW) is remaining biomass following gum Arabic harvesting and has no use mentioned in the literature as of yet. This study aims to convert ASW into valuable biochar via two comparative thermal and hydrothermal techniques, which include pyrochar ASW at 300 °C (PC ASW300) and hydrochar ASW at 180 °C (HC ASW180), respectively, for Cu (II) adsorption from aqueous solutions. SEM-EDS, FTIR, XRD, and XPS were used to characterize the biochar. Adsorption performance was studied as a function of pH, contact time, and adsorbent concentration. Adsorption kinetics were best fit for a pseudo-second-order model. And thermodynamics studies revealed that Cu (II) on biochar was endothermic, spontaneous, and best fitted to the Langmuir isotherm model. Pyrochar adsorption capacity (31.93 mg g-1) was seven times that of hydrochar (5.45 mg g-1). ASW treated with phosphorus (PC H3PO4 and HC H3PO4) prior to the carbonization altered the pore structure and surface functional groups as well (O-P-O, P-CH3, and P-OH) of biochar. It was found that treating with phosphorous acid increased adsorption capacity to 141.7 mg g-1 and 22.24 mg g-1 for PC H3PO4 and HC H3PO4, respectively. The surface functional groups of biochar resulted from lignin, alkaloids, and polysaccharides combined with Cu (II) during the adsorption process via surface complexation accompanied by π-electron interaction and Cu (II) reduction. These findings shed light on the ASW biochar potential as a new green cost-effective adsorbent and drew an insightful understanding of Cu (II) adsorption performance and mechanism. It is concluded that ASW-derived biochar is highly effective and a promising alternative for Cu (II) decontamination from wastewater.
Collapse
Affiliation(s)
- Tawasul Mohammed Ali Babeker
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Industrial Research and Consultancy Center, Ministry of Industry, Khartoum, Sudan
| | - Shaoyan Lv
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jinglian Wu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Juan Zhou
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
8
|
Zhi G, Qi X, Yan G, Li Y, Wang J, Huang P, Wang H, Shi J, Wang J. Chloride converts lead slag into a bifunctional material to remove heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118631. [PMID: 37459815 DOI: 10.1016/j.jenvman.2023.118631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 09/17/2023]
Abstract
Efficient and safe removal of arsenic and lead from industrial wastewater is essential for ecological protection. In this study, we developed a novel method using lead slag as a purifying agent and sodium chloride as a reinforcing agent to remove arsenic and lead from industrial wastewater. Through a combination of experiments and simulations, we elucidated the mechanisms involved in this reaction. The initial concentrations of As and Pb ions in the industrial wastewater were 4333 and 188 mg/L, respectively. After the reaction at 25 °C and a pH ranging from 9.7 to 10, the concentrations of arsenic and lead were reduced to 4.9 mg/L and 0.008 mg/L, respectively, achieving a removal rate of 99.9%. Our experimental results demonstrated that Pb2+ and AsO43- ions released from the lead slag and industrial wastewater reacted with Cl- ions to form Pb5(AsO4)3Cl precipitates, thus effectively eliminating a significant amount of As and Pb species. Simulation studies indicated that Pb5(AsO4)3Cl exhibited exceptional stability below 400 °C and could be directly stored. Additionally, the lead slag, which is rich in silica, played a crucial role in removing and stabilizing As and Pb ions. Under alkaline conditions, silica encapsulated the As and Pb species, adhering to the surface of the Pb-As co-precipitates and forming dense, irregular, small particles with internal and external structures that impeded the efflux of As and Pb ions. This phenomenon was confirmed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The kinetics of As and Pb ion removal was consistent with the pseudo-second-order kinetic model, indicating that the removal process was primarily governed by chemical interactions. Lead slag exhibits significant potential and advantages in the removal of As and Pb. This innovative method offers an effective approach to address heavy metal contamination in industrial wastewater, thus contributing to ecological protection.
Collapse
Affiliation(s)
- Gang Zhi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xianjin Qi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Guizhi Yan
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yongkui Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Junfeng Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Pengna Huang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Heng Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - JiaHao Shi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianhua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
9
|
Lam WS, Lam WH, Lee PF. The Studies on Chitosan for Sustainable Development: A Bibliometric Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2857. [PMID: 37049151 PMCID: PMC10096242 DOI: 10.3390/ma16072857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Chitosan is a biocompatible polymer with vast applications in pharmacology, medicine, paper making, agriculture, and the food industry due to its low toxicity. Chitosan also plays an important role in the sustainable environment since chitosan is able to absorb greenhouse gases, harmful organic matter, and heavy ions. Therefore, this paper conducts a bibliometric analysis of chitosan for sustainable development using the Scopus database from 1976 to 2023. A performance analysis on the 8002 documents was performed with Harzing's Publish or Perish. Science mapping was conducted using VOSviewer. The annual publication on chitosan for sustainable development showed an upward trend in recent years as the annual publication peaked in 2022 with 1178 documents with most of the documents being articles and published in journals. Material science, chemistry, and engineering are tightly related subject areas. China had the highest publication of 1560 total documents while the United States had the most impactful publication with 55,019 total citations, 68.77 citations per document, 77.6 citations per cited document, h-index 110, and g-index of 211. India had the largest international collaboration with 572 total link strength. "International Journal of Biological Macromolecules", "Carbohydrate Polymers", and "Polymers" have been identified as the top three source titles that publish the most documents on chitosan for sustainable development. The emerging trends in chitosan on sustainable development focus on the application of chitosan as an antibacterial agent and biosorbent for contaminants, especially in water treatment.
Collapse
Affiliation(s)
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia; (W.S.L.); (P.F.L.)
| | | |
Collapse
|
10
|
Marcińczyk M, Krasucka P, Duan W, Pan B, Siatecka A, Oleszczuk P. Ecotoxicological characterization of engineered biochars produced from different feedstock and temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160640. [PMID: 36464053 DOI: 10.1016/j.scitotenv.2022.160640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) engineering, which has recently gained a lot of interest, allows designing the functional materials. BC modification improves the properties of pristine biochar, especially in terms of adsorption parameters. An interesting type of modification is the introduction of metals into the BC's structure. There is a knowledge gap regarding the effects of modified BC (e.g., BC-Mg, BC-Zn) on organisms. The aim of this study was the ecotoxicological evaluation of BC-Mg and BC-Zn composites, received under diverse conditions from willow or sewage sludge at 500 or 700 °C. The ecotoxicological tests with bacteria Vibrio fischeri (V. fischeri) and invertebrates Folsomia candida (F. candida) were applied to determine the toxicity of BC. The content of toxic substances (e.g., polycyclic aromatic hydrocarbons (PAHs), heavy metals (HMs), environmentally persistent free radicals (EPFRs)) in BC were also determined and compared with ecotoxicological parameters. The ecotoxicity of studied BCs depends on many variables: feedstock type, pyrolysis temperature and the modification type. The Zn and Mg modification reduced (from 28 to 63 %) the total Ʃ16 PAHs content in willow-derived BCs while in SL-derived BCs the total Ʃ16 PAHs content was even 1.5-3 times higher compared to pristine BCs. The Zn modified willow-derived BCs affected positively on F. candida reproduction but showed inhibition of luminescence V. fischeri. BC-Mg exhibited harmful effect to F. candida. The ecotoxicological assessment carried out sheds light on the potential toxicity of BC-Zn and BC-Mg composites, which are widely used in the removal of heavy metals, pharmaceuticals, dyes from waters and soils.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
11
|
Balaba N, Horsth DFL, Correa JDS, Primo JDO, Jaerger S, Alves HJ, Bittencourt C, Anaissi FJ. Eco-Friendly Polysaccharide-Based Synthesis of Nanostructured MgO: Application in the Removal of Cu 2+ in Wastewater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:693. [PMID: 36676431 PMCID: PMC9860860 DOI: 10.3390/ma16020693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The present study described three synthesis routes using different natural polysaccharides as low-cost non-toxic fuels and complexing agents for obtaining MgO. Cassava starch, Aloe vera leaves (mainly acemannan) gel, and citric pectin powder were mixed with magnesium nitrate salt and calcined at 750 °C for 2 h. The samples were named according to the polysaccharide: cassava starch (MgO-St), citrus pectin (MgO-CP), and Aloe vera (MgO-Av). X-ray diffraction identified the formation of a monophasic periclase structure (FCC type) for the three samples. The N2 adsorption/desorption isotherms (B.E.T. method) showed an important difference in textural properties, with a higher pore volume (Vmax = 89.76 cc/g) and higher surface area (SA = 43.93 m2/g) obtained for MgO-St, followed by MgO-CP (Vmax = 11.01 cc/g; SA = 7.01 m2/g) and MgO-Av (Vmax = 6.44 cc/g; SA = 6.63 m2/g). These data were consistent with the porous appearance observed in SEM images. Porous solids are interesting as adsorbents for removing metallic and molecular ions from wastewater. The removal of copper ions from water was evaluated, and the experimental data at equilibrium were adjusted according to the Freundlich, Langmuir, and Temkin isotherms. According to the Langmuir model, the maximum adsorption capacity (qmax) was 6331.117, 5831.244, and 6726.623 mg·g-1 for the adsorbents MgO-St, MgO-Av, and MgO-CP, respectively. The results of the adsorption isotherms indicated that the synthesized magnesium oxides could be used to decrease the amount of Cu2+ ions in wastewater.
Collapse
Affiliation(s)
- Nayara Balaba
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Dienifer F. L. Horsth
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Jamille de S. Correa
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Julia de O. Primo
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Silvia Jaerger
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| | - Helton J. Alves
- Laboratório de Materiais e Energias Renováveis, LABMATER/UFPR, Universidade Federal do Paraná—UFPR, Palotina 85950-000, Brazil
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Fauze J. Anaissi
- Chemistry Department, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
| |
Collapse
|